Skip to main content

Detection of Mitochondrial DNA Variation in Human Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 628))

Abstract

The ability to detect mitochondrial DNA (mtDNA) variation within human cells is important not only to identify mutations causing mtDNA disease, but also as mtDNA mutations are being increasingly described in many ageing tissues and in complex diseases such as diabetes, neurodegeneration and cancer. In this review, we discuss the main molecular genetic techniques that can be applied to study the two main types of mtDNA mutation: point mutations and large-scale mtDNA rearrangements. We then describe in detail protocols routinely used within our laboratory to analyse mtDNA mutations in individual human cells such as single muscle fibres and individual neurons to study the relationship between mtDNA mutation load and respiratory chain dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Krishnan, K.J., Greaves, L.C., Reeve, A.K. and Turnbull, D. (2007) The ageing mitochondrial genome. Nucleic Acids Research, 35, 7399–7405.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor, R.W. and Turnbull, D.M. (2005) Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 6, 389–402.

    Article  PubMed  CAS  Google Scholar 

  3. Quintana-Murci, L., Semino, O., Bandelt, H.J., Passarino, G., McElreavey, K. and Santachiara-Benerecetti, A.S. (1999) Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nature Genetics, 23, 437–441.

    Article  PubMed  CAS  Google Scholar 

  4. Chinnery, P.F., Samuels, D.C., Elson, J. and Turnbull, D.M. (2002) Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet, 360, 1323–1325.

    Article  PubMed  CAS  Google Scholar 

  5. Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H. et al.(2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 38, 515–517.

    Article  PubMed  CAS  Google Scholar 

  6. Greaves, L.C., Preston, S.L., Tadrous, P.J., Taylor, R.W., Barron, M.J., Oukrif, D. et al.(2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proceedings of the National Academy of Sciences of the United States of America, 103, 714–719.

    Article  PubMed  CAS  Google Scholar 

  7. Taylor, R.W., Barron, M.J., Borthwick, G.M., Gospel, A., Chinnery, P.F., Samuels, D.C. et al.(2003) Mitochondrial DNA mutations in human colonic crypt stem cells. Journal of Clinical Investigation, 112, 1351–1360.

    PubMed  CAS  Google Scholar 

  8. Johnson, M.A., Bindoff, L.A. and Turnbull, D.M. (1993) Cytochrome c oxidase activity in single muscle fibers: assay techniques and diagnostic applications. Annals of Neurology, 33, 28–35.

    Article  PubMed  CAS  Google Scholar 

  9. Goto, Y., Nonaka, I. and Horai, S. (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature, 348, 651–653.

    Article  PubMed  CAS  Google Scholar 

  10. Santorelli, F.M., Tanji, K., Kulikova, R., Shanske, S., Vilarinho, L., Hays, A.P. et al.(1997) Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochemical and Biophysical Research Communications, 238, 326–328.

    Article  PubMed  CAS  Google Scholar 

  11. Kirby, D.M., McFarland, R., Ohtake, A., Dunning, C., Ryan, M.T., Wilson, C. (2004) Mutations of the mitochondrial ND1 gene as a cause of MELAS. Journal of Medical Genetics, 41, 784–789.

    Article  PubMed  CAS  Google Scholar 

  12. Schaefer, A.M., McFarland, R., Blakely, E.L., He, L., Whittaker, R.G., Taylor, R.W. (2008) Prevalence of mitochondrial DNA disease in adults. Annals of Neurology, 63, 35–39.

    Article  PubMed  CAS  Google Scholar 

  13. Corral-Debrinski, M., Shoffner, J.M., Lott, M.T. and Wallace, D.C. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutation Research, 275, 169–180.

    Article  PubMed  CAS  Google Scholar 

  14. Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W. and Khrapko, K. (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature genetics, 38, 518–520.

    Article  PubMed  CAS  Google Scholar 

  15. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. and Attardi, G. (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science (New York, NY), 286, 774–779.

    Article  CAS  Google Scholar 

  16. Muller-Hocker, J. (1989) Cytochrome-c-oxidase deficient cardiomyocytes in the human heart an age-related phenomenon. A histochemical ultracytochemical study. American Journal of Pathology, 134, 1167–1173.

    PubMed  CAS  Google Scholar 

  17. Brierley, E.J., Johnson, M.A., Lightowlers, R.N., James, O.F. and Turnbull, D.M. (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Annals of Neurology, 43, 217–223.

    Article  PubMed  CAS  Google Scholar 

  18. Bua, E., Johnson, J., Herbst, A., Delong, B., McKenzie, D., Salamat, S. et al.(2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. American Journal of Human Genetics, 79, 469–480.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor, R.W., Schaefer, A.M., Barron, M.J., McFarland, R. and Turnbull, D.M. (2004) The diagnosis of mitochondrial muscle disease. Neuromuscular Disorders, 14, 237–245.

    Article  PubMed  Google Scholar 

  20. Blakely, E.L., He, L., Gardner J.L., Hudson, G., Walter, J., Hughes, I. et al.(2008) Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscular Disorders, 18(7), 557–560.

    Article  PubMed  Google Scholar 

  21. Cree, L.M., Samuels, D.C., de Sousa Lopes, S.C., Rajasimha, H.K., Wonnapinij, P., Mann, J.R. et al.(2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nature Genetics, 40, 249–254.

    Article  PubMed  CAS  Google Scholar 

  22. Pyle, A., Taylor, R.W., Durham, S.E., Deschauer, M., Schaefer, A.M., Samuels, D.C. et al.(2007) Depletion of mitochondrial DNA in leucocytes harbouring the 3243A- > G mtDNA mutation. Journal of Medical Genetics, 44, 69–74.

    Article  PubMed  CAS  Google Scholar 

  23. Holt, I.J., Harding, A.E. and Morgan-Hughes, J.A. (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331, 717–719.

    Article  PubMed  CAS  Google Scholar 

  24. Poulton, J., Deadman, M.E. and Gardiner, R.M. (1989) Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet, 1, 236–240.

    Article  PubMed  CAS  Google Scholar 

  25. Reeve, A.K., Krishnan, K.J., Elson, J.L., Morris, C.M., Bender, A., Lightowlers, R.N. et al.(2008) Nature of mitochondrial DNA deletions in substantia nigra neurons. American Journal of Human Genetics, 82, 228–235.

    Article  PubMed  CAS  Google Scholar 

  26. MITOMAP. (2006) Centre for Molecular Medicine, Emory University, Atlanta, GA.

    Google Scholar 

  27. Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., Beal, M.F. and Wallace, D.C. (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genetics, 2, 324–329.

    Article  PubMed  CAS  Google Scholar 

  28. Corral-Debrinski, M., Shoffner, J.M., Lott, M.T. and Wallace, D.C. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutation Research, 275, 169–180.

    Article  PubMed  CAS  Google Scholar 

  29. Krishnan, K.J. and Birch-Machin, M.A. (2006) The incidence of both tandem duplications and the common deletion in mtDNA from three distinct categories of sun-exposed human skin and in prolonged culture of fibroblasts. Journal of Investigative Dermatology, 126, 408–415.

    Article  PubMed  CAS  Google Scholar 

  30. Sciacco, M., Bonilla, E., Schon, E.A., DiMauro, S. and Moraes, C.T. (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Human Molecular Genetics, 3, 13–19.

    Article  PubMed  CAS  Google Scholar 

  31. He, L., Chinnery, P.F., Durham, S.E., Blakely, E.L., Wardell, T.M., Borthwick, G.M. et al.(2002) Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Research,30, e68.

    Article  PubMed  Google Scholar 

  32. Taivassalo, T., Gardner, J.L., Taylor, R.W., Schaefer, A.M., Newman, J., Barron, M.J. et al.(2006) Endurance training and detraitning in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 129, 3391–3401.

    Article  PubMed  Google Scholar 

  33. Krishnan, K.J., Bender, A., Taylor, R.W. and Turnbull, D.M. (2007) A multiplex real-time PCR method to detect and quantify mitochondrial DNA deletions in individual cells. Analytical Biochemistry, 370, 127–129.

    Article  PubMed  CAS  Google Scholar 

  34. Blakely, E.L., He, L., Taylor, R.W., Chinnery, P.F., Lightowlers, R.N., Schaefer, A.M. et al.(2004) Mitochondrial DNA deletion in “identical” twin brothers. Journal of Medical Genetics, 41, e19.

    Article  PubMed  CAS  Google Scholar 

  35. Chabi, B., Mousson de Camaret, B., Duborjal, H., Issartel, J.P. and Stepien, G. (2003) Quantification of mitochondrial DNA deletion, depletion, and overreplication: application to diagnosis. Clinical Chemistry, 49, 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  36. Poe, B.G., Navratil, M., Arriaga, E.A. (2007) Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Analytical Biochemistry, 362, 193–200.

    Article  PubMed  CAS  Google Scholar 

  37. Pogozelski, W.K., H.C., Woeller, C.F., Jackson, W.E., Zullo, S.J., Fischel-Ghodsian, N., Blakely, W.F. (2003) Quantification of total mitochondrial DNA and the 4977-bp common deletion in Pearson’s syndrome lymphoblasts using a fluorogenic 5¢-nuclease (TaqMan) real-time polymerase chain reaction assay and plasmid external calibration standards. Mitochondrion, 2, 415–427.

    Article  PubMed  CAS  Google Scholar 

  38. van Den Bosch, B.J., de Coo, R.F., Scholte, H.R., Nijland, J.G., van Den Bogaard, R., de Visser, M. et al.(2000) Mutation analysis of the entire mitochondrial genome using denaturing high performance liquid chromatography. Nucleic Acids Research, 28, E89.

    Article  Google Scholar 

  39. Bannwarth, S., Procaccio, V. and Paquis-Flucklinger, V. (2006) Rapid identification of unknown heteroplasmic mutations across the entire human mitochondrial genome with mismatch-specific Surveyor Nuclease. Nature Protocols, 1, 2037–2047.

    Article  PubMed  CAS  Google Scholar 

  40. Bannwarth, S., Procaccio, V. and Paquis-Flucklinger, V. (2005) Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects. Human Mutation, 25, 575–582.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor, R.W., Taylor, G.A., Durham, S.E. and Turnbull, D.M. (2001) The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of mutations. Nucleic Acids Research, 29, E74–74.

    Article  PubMed  CAS  Google Scholar 

  42. McDonald, S.A., Greaves, L.C., Gutierrez-Gonzalez, L., Rodriguez-Justo, M., Deheragoda, M., Leedham, S.J. et al.(2008) Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology, 134, 500–510.

    Article  PubMed  CAS  Google Scholar 

  43. McDonald, S.A., Preston, S.L., Greaves, L.C., Leedham, S.J., Lovell, M.A., Jankowski, J.A. et al.(2006) Clonal expansion in the human gut: mitochondrial DNA mutations show us the way. Cell Cycle, 5, 808–811.

    Article  PubMed  CAS  Google Scholar 

  44. Sacconi, S., Salviati, L., Nishigaki, Y., Walker, W.F., Hernandez-Rosa, E., Trevisson, E. et al.(2008) A Functionally Dominant Mitochondrial DNA Mutation. Human Molecular Genetics, 17(12), 1814–1820.

    Article  PubMed  CAS  Google Scholar 

  45. White, H.E., Durston, V.J., Seller, A., Fratter, C., Harvey, J.F. and Cross, N.C. (2005) Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing. Gene Testing, 9, 190–199.

    Article  CAS  Google Scholar 

  46. Moraes, C.T., Ricci, E., Bonilla, E., DiMauro, S. and Schon, E.A. (1992) The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. American Journal of Human Genetics, 50, 934–949.

    PubMed  CAS  Google Scholar 

  47. Tanno, Y., Yoneda, M., Nonaka, I., Tanaka, K., Miyatake, T. and Tsuji, S. (1991) Quantitation of mitochondrial DNA carrying tRNALys mutation in MERRF patients. Biochemical and Biophysical Research Communications, 179, 880–885.

    Article  PubMed  CAS  Google Scholar 

  48. McDonnell, M.T., Schaefer, A.M., Blakely, E.L., McFarland, R., Chinnery, P.F., Turnbull, D.M. et al.(2004) Noninvasive diagnosis of the 3243A>G mitochondrial DNA mutation using urinary epithelial cells. European Journal of Human Genetics, 12, 778–781.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KJK has a personal fellowship funded by the Alzheimer’s Research Trust. We are grateful for financial support from the Wellcome Trust, SPARKS (Sport Aiding Medical Research for Kids) and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim J. Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krishnan, K.J., Blackwood, J.K., Reeve, A.K., Turnbull, D.M., Taylor, R.W. (2010). Detection of Mitochondrial DNA Variation in Human Cells. In: Barnes, M., Breen, G. (eds) Genetic Variation. Methods in Molecular Biology, vol 628. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-367-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-367-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-366-4

  • Online ISBN: 978-1-60327-367-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics