Skip to main content

Genetic Variation Analysis for Biomedical Researchers: A Primer

  • Protocol
  • First Online:
Genetic Variation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 628))

Abstract

Biomedical researchers studying gene function should consider the impact of variation, even if genetics is not the primary objective of an investigation. Information on genetic variation can provide a valuable insight into the functional range and critical regions of a gene, protein or regulatory element. Genetic variants may be diverse in nature, ranging from single nucleotide variants, tandem repeats, small insertions or deletions to large copy number variants. Until recently, information on genetic variation was quite limited, but now a range of large scale surveys of variation have made plentiful data on common variation and a picture is beginning to emerge from the driving forces in human evolution and population diversification. Next-generation sequencing technologies are moving knowledge into a new phase focused on the individual genome and complete disclosure of individual variation, including the rarest of variants. The consequences of these advances in medicine are unresolved, but it is clear that biomedical researchers cannot afford to ignore this information. This review presents a broad overview of the in silico methods that will allow a researcher to quickly review known variation in a gene of interest, providing some pointers for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes, M.R. (2006) Navigating the HapMap. Brief. Bioinform., 7, 211–224.

    Article  PubMed  CAS  Google Scholar 

  2. Altshuler, D., Pollara, V.J., Cowles, C.R., Van Etten, W.J., Baldwin, J., Linton, L. and Lander, E.S. (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 407, 513–516.

    Article  PubMed  CAS  Google Scholar 

  3. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., et al. (2006) Global variation in copy number in the human genome. Nature, 444, 444–454.

    Article  PubMed  CAS  Google Scholar 

  4. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature, 437, 1299–1320.

    Article  Google Scholar 

  5. Gelfand, Y., Rodriguez, A. and Benson, G. (2007) TRDB - the Tandem Repeats Database. Nucleic Acids Res., 35, D80-D87.

    Article  PubMed  CAS  Google Scholar 

  6. Gratacos, M., Nadal, M., Martin-Santos, R., Pujana, M.A., Gago, J., Peral, B., et al. (2001) A polymorphic genomic duplication on human chromosome 15 is a susceptibility factor for panic and phobic disorders. Cell, 106, 367–379.

    Article  PubMed  CAS  Google Scholar 

  7. Komura, D., Shen, F., Ishikawa, S., Fitch, K.R., Chen, W., Zhang, J., et al. (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res., 16, 1575–1584.

    Article  PubMed  CAS  Google Scholar 

  8. McCarroll, S.A., Kuruvilla, F.G., Korn, J.M., Cawley, S., Nemesh, J., Wysoker, A., et al. (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat.Genet., 40, 1166–1174.

    Article  PubMed  CAS  Google Scholar 

  9. Bentley, D.R. (2006) Whole-genome re-sequencing. Curr. Opin. Genet. Dev., 16, 545–552.

    Article  PubMed  CAS  Google Scholar 

  10. Kluijtmans, L.A., van den Heuvel, L.P., Boers, G.H., Frosst, P., Stevens, E.M., van Oost, B.A., et al. (1996) Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am. J. Hum. Genet., 58, 35–41.

    PubMed  CAS  Google Scholar 

  11. Bahar, A.Y., Taylor, P.J., Andrews, L., Proos, A., Burnett, L., Tucker, K., et al. (2001) The frequency of founder mutations in the BRCA1, BRCA2, and APC genes in Australian Ashkenazi Jews: implications for the generality of U.S. population data. Cancer, 92, 440–445.

    Article  PubMed  CAS  Google Scholar 

  12. Roque, M., Godoy, C.P., Castellanos, M., Pusiol, E. and Mayorga, L.S. (2001) Population screening of F508del (DeltaF508), the most frequent mutation in the CFTR gene associated with cystic fibrosis in Argentina. Hum. Mutat., 18, 167.

    Article  PubMed  CAS  Google Scholar 

  13. Forbes, S.A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., et al. (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet., Chapter 10, Unit.

    Google Scholar 

  14. Amberger, J., Bocchini, C.A., Scott, A.F. and Hamosh, A. (2009) McKusick’s online Mendelian inheritance in man (OMIM). Nucleic Acids Res., 37, D793-D796.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, R.D. and Kwok, P.Y. (2001) The birth and death of human single-nucleotide polymorphisms: new experimental evidence and implications for human history and medicine. Hum. Mol. Genet., 10, 2195–2198.

    Article  PubMed  CAS  Google Scholar 

  16. Cooper, D.N. and Youssoufian, H. (1988) The CpG dinucleotide and human genetic disease. Hum. Genet., 78, 151–155.

    Article  PubMed  CAS  Google Scholar 

  17. Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., et al. (2001) Linkage disequilibrium in the human genome. Nature, 411, 199–204.

    Article  PubMed  CAS  Google Scholar 

  18. Street, S.L., Kyes, R.C., Grant, R. and Ferguson, B. (2007) Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. BMC Genomics, 8, 480.

    Article  PubMed  Google Scholar 

  19. Hodgkinson, A., Ladoukakis, E. and Eyre-Walker, A. (2009) Cryptic variation in the human mutation rate. PLoS Biol., 7, e1000027.

    Article  PubMed  Google Scholar 

  20. Miller, R.D., Taillon-Miller, P. and Kwok, P.Y. (2001) Regions of low single-nucleotide polymorphism incidence in human and orangutan xq: deserts and recent coalescences. Genomics, 71, 78–88.

    Article  PubMed  CAS  Google Scholar 

  21. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M. and Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308–311.

    Article  PubMed  CAS  Google Scholar 

  22. Orr, H.T. and Zoghbi, H.Y. (2007) Trinucleotide repeat disorders. Annu. Rev. Neurosci., 30, 575–621.

    Article  PubMed  CAS  Google Scholar 

  23. Lucassen, A.M., Julier, C., Beressi, J.P., Boitard, C., Froguel, P., Lathrop, M. and Bell, J.I. (1993) Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat. Genet., 4, 305–310.

    Article  PubMed  CAS  Google Scholar 

  24. Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res., 27, 573–580.

    Article  PubMed  CAS  Google Scholar 

  25. Woollard, P. (2009) Asking complex questions of the genome without programming. Methods Mol. Biol.

    Google Scholar 

  26. Porter, S.G., Day, J., McCarty, R.E., Shearn, A., Shingles, R., Fletcher, L., Murphy, S. and Pearlman, R. (2007) Exploring DNA structure with Cn3D. CBE Life Sci. Educ., 6, 65–73.

    Article  PubMed  Google Scholar 

  27. Kuhn, R.M., Karolchik, D., Zweig, A.S., Wang, T., Smith, K.E., Rosenbloom, K.R., et al. (2009) The UCSC Genome Browser Database: update 2009. Nucleic Acids Res., 37, D755-D761.

    Article  PubMed  CAS  Google Scholar 

  28. Mooney, S., Krishnan, V. and Evani, U.S. (2009) Bioinformatic tools for identifying disease gene and SNP candidates. Methods Mol. Biol.

    Google Scholar 

  29. Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C., Farber, C.M.S. et al. (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 382, 722–725.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barnes, M.R. (2010). Genetic Variation Analysis for Biomedical Researchers: A Primer. In: Barnes, M., Breen, G. (eds) Genetic Variation. Methods in Molecular Biology, vol 628. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-367-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-367-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-366-4

  • Online ISBN: 978-1-60327-367-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics