Skip to main content
Book cover

Liposomes pp 321–334Cite as

Gadolinium-Loaded Polychelating Polymer-Containing Tumor-Targeted Liposomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 605))

Abstract

Magnetic resonance (MR) is one of the most widely used imaging modalities in contemporary medicine to obtain images of pathological areas. Still, there is a big effort to facilitate the accumulation of contrast in the required zone and further increase a local spatial concentration of a contrast agent for better imaging. Certain particulate carriers able to carry multiple contrast moieties can be used for an efficient delivery of contrast agents to areas of interest and enhancing a signal from these areas. Among those carriers, liposomes draw special attention because of their easily controlled properties and good pharmacological characteristics. To enhance the signal intensity from a given reporter metal in liposomes, one may attempt to increase the net quantity of carrier-associated reporter metal by using polylysine (PLL)-based polychelating amphiphilic polymers (PAP). In addition to heavy load of reporter metal onto the pharmaceutical nanocarrier (liposome), the accumulation of the contrast nanoparticles in organs and tissues of interest (such as tumors) can be significantly enhanced by targeting such particles both “passively,” via the so-called enhanced permeability and retention (EPR) effect, or “actively,” using various target-specific ligands, such as monoclonal antibodies. Combining three different properties – heavy load with Gd via the liposome membrane-incorporated PAP and tumor specificity mediated by the liposome-attached mAb 2C5 – in a single nanoparticle of long-circulating (PEGylated) liposomes could provide a new contrast agent for highly specific and efficient tumor MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wolf GL (1999) Delivery of diagnostic agents: achievements and challenges. Adv Drug Deliv Rev 37(1–3):1–12

    Article  CAS  PubMed  Google Scholar 

  2. Gregoriadis G (1993) Liposome technology, vol 1–3. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Lasic DD (1993) Liposomes from physics to applications. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  4. Torchilin VP (1997) Pharmacokinetic considerations in the development of labeled liposomes and micelles for diagnostic imaging. Q J Nucl Med 41:141–153

    CAS  PubMed  Google Scholar 

  5. Tóth É, Helm L (2002) Relaxivity of MRI contrast agents. In: Krause W (ed) Topics in current chemistry, contrast agent 1, vol 221. Springer-Verlag, Berlin Heidelberg, pp 61–63

    Chapter  Google Scholar 

  6. Unger E, Shen DK, Wu GL, Fritz T (1991) Liposomes as MR contrast agents: pros and cons. Magn Reson Med 22(2):304–308

    Article  CAS  PubMed  Google Scholar 

  7. Barsky D, Pütz B, Schulten K, Magin RL (1992) Theory of paramagnetic contrast agents in liposome systems. Magn Reson Med 24(1):1–13

    Article  CAS  PubMed  Google Scholar 

  8. Unger E, Tilcock C, Ahkong QF, Fritz T (1990) Paramagnetic liposomes as magnetic resonance contrast agents. Invest Radiol 25(Suppl 1):S65–S66

    CAS  PubMed  Google Scholar 

  9. Gries H (2002) Extracellular MRI contrast agents based on gadolinium. In: Krause W (ed) Topics in current chemistry, contrast agent 1, vol 221. Springer-Verlag, Berlin Heidelberg, pp 3–29

    Google Scholar 

  10. Strijkers GJ, Mulder WJ, van Heeswijk RB, Frederik PM, Bomans P, Magusin PC, Nicolay K (2005) Relaxivity of liposomal paramagnetic MRI contrast agents. MAGMA 18(4):186–192

    Article  CAS  PubMed  Google Scholar 

  11. Kabalka G, Buonocore E, Hubner K, Moss T, Norley N, Huang L (1987) Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology 163(1):255–258

    CAS  PubMed  Google Scholar 

  12. Kabalka GW, Davis MA, Moss TH, Buonocore E, Hubner K, Holmberg E, Maruyama K, Huang L (1991) Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med 19(2):406–415

    Article  CAS  PubMed  Google Scholar 

  13. Trubetskoy VS, Cannillo JA, Milshtein A, Wolf GL, Torchilin VP (1995) Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging 13(1):31–37

    Article  CAS  PubMed  Google Scholar 

  14. McDannold N, Fossheim SL, Rasmussen H, Martin H, Vykhodtseva N, Hynynen K (2004) Heat-activated liposomal MR contrast agent: initial in vivo results in rabbit liver and kidney. Radiology 230(3):743–752

    Article  PubMed  Google Scholar 

  15. Løkling KE, Fossheim SL, Skurtveit R, Bjørnerud A, Klaveness J (2001) pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 19(5):731–738

    Article  PubMed  Google Scholar 

  16. Løkling KE, Skurtveit R, Fossheim SL, Smistad G, Henriksen I, Klaveness J (2003) pH-sensitive paramagnetic liposomes for MRI: assessment of stability in blood. Magn Reson Imaging 21(5):531–540

    Article  PubMed  Google Scholar 

  17. Fritz T, Unger E, Wilson-Sanders S, Ahkong QF, Tilcock C (1991) Detailed toxicity studies of liposomal gadolinium–DTPA. Invest Radiol 26(11):960–968

    Article  CAS  PubMed  Google Scholar 

  18. Unger EC, Fritz TA, Tilcock C, New TE (1991) Clearance of liposomal gadolinium: in vivo decomplexation. J Magn Reson Imaging 1(6):689–693

    Article  CAS  PubMed  Google Scholar 

  19. Trubetskoy VS, Torchilin VP (1994) New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes. J Lipid Res 4:961–980

    CAS  Google Scholar 

  20. Weissig V, Babich J, Torchilin VP (2000) Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 18:293–299

    Article  CAS  PubMed  Google Scholar 

  21. Erdogan S, Aruna R, Sawant R, Hurley J, Torchilin VP (2006) Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J Lipid Res 16:45–55

    CAS  Google Scholar 

  22. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  23. Gupta H, Weissleder R (1996) Targeted contrast agents in MR imaging. Magn Reson Imaging Clin N Am 4:171–184

    CAS  PubMed  Google Scholar 

  24. Morawski AM, Lanza GA, Wickline SA (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16:89–92

    Article  CAS  PubMed  Google Scholar 

  25. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycoles effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Article  CAS  PubMed  Google Scholar 

  26. Bertini I, Bianchini F, Calorini L et al (2004) Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med 52:669–672

    Article  CAS  PubMed  Google Scholar 

  27. Iakoubov LZ, Torchilin VP (1998) Nucleosome-releasing treatment makes surviving tumor cells better targets for nucleosomespecific anticancer antibodies. Cancer Detect Prev 22:470–475

    Article  CAS  PubMed  Google Scholar 

  28. Chakilam AR, Pabba S, Mongayt D, Iakoubov LZ, Torchilin VP (2004) A single monoclonal antinuclear autoantibody with nucleosome-restricted specificity inhibits growth of diverse human tumors in nude mice. Cancer Ther 2:353–364

    Google Scholar 

  29. Erdogan S, Medarova ZO, Aruna R, Moore A, Torchilin VP (2008) Enhanced tumor MR imaging with gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes. J Magn Reson Imaging 27:574–580

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by NIH Grant R01-EB002995 to Vladimir P. Torchilin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suna Erdogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Erdogan, S., Torchilin, V.P. (2010). Gadolinium-Loaded Polychelating Polymer-Containing Tumor-Targeted Liposomes. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology, vol 605. Humana Press. https://doi.org/10.1007/978-1-60327-360-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-360-2_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-359-6

  • Online ISBN: 978-1-60327-360-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics