Skip to main content

Nanoliposomes: Preparation and Analysis

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 605))

Abstract

Nanoliposome, or submicron bilayer lipid vesicle, is a new technology for the encapsulation and delivery of bioactive agents. The list of bioactive material that can be incorporated to nanoliposomes is immense, ranging from pharmaceuticals to cosmetics and nutraceuticals. Because of their biocompatibility and biodegradability, along with their nanosize, nanoliposomes have potential applications in a vast range of fields, including nanotherapy (e.g. diagnosis, cancer therapy, gene delivery), cosmetics, food technology and agriculture. Nanoliposomes are able to enhance the performance of bioactive agents by improving their solubility and bioavailability, in vitro and in vivo stability, as well as preventing their unwanted interactions with other molecules. Another advantage of nanoliposomes is cell-specific targeting, which is a prerequisite to attain drug concentrations required for optimum therapeutic efficacy in the target site while minimising adverse effects on healthy cells and tissues. This chapter covers nanoliposomes, particularly with respect to their properties, preparation methods and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chol:

Cholesterol

DCP:

Dicetylphosphate

DPPC:

Dipalmitoyl phosphatidylcholine

EE:

Entrapment efficiency

FFF:

Field flow fractionation

HM-liposomes:

Lipid vesicles prepared by the heating method

HPLC:

High-performance liquid chromatography

OH:

Hydroxyl group

LUV:

Large unilamellar vesicles

MLV:

Multilamellar vesicles

NMR:

Nuclear magnetic resonance

PC:

Phosphatidylcholine

SPM:

Scanning Probe Microscopy

SUV:

Small unilamellar vesicles

T c :

Phase transition temperature

TLC:

Thin layer chromatography

T m :

Melting temperature

References

  1. Mozafari MR, Mortazavi SM (eds) (2005) Nanoliposomes: from fundamentals to recent developments. Trafford Publishing Ltd, Oxford, UK

    Google Scholar 

  2. Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H (2006) Review: recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 86:2038–2045

    Article  CAS  Google Scholar 

  3. Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VSM, Mozafari MR (2007) The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 38:804–818

    Article  CAS  PubMed  Google Scholar 

  4. Nomura SM, Yoshikawa Y, Yoshikawa K, Dannenmuller O, Chasserot-Golaz S, Ourisson G, Nakatani Y (2001) Towards proto-cells: primitive lipid vesicles encapsulating giant DNA and its histone complex. ChemBioChem 2:457–459

    Article  CAS  PubMed  Google Scholar 

  5. Pozzi G, Birault V, Werner B, Dannenmuller O, Nakatani Y, Ourisson G, Terakawa S (1996) Single-chain polyterpenyl phosphates form primitive membranes. Angew Chem Int Ed Engl 35:177–180

    Article  CAS  Google Scholar 

  6. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  7. Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10:711–719

    CAS  PubMed  Google Scholar 

  8. Mozafari MR (ed) (2006) Nanocarrier technologies: frontiers of nanotherapy. Springer, The Netherlands

    Google Scholar 

  9. Zhai GX, Chen GG, Zhao Y, Lou HX, Zhang JS (2002) Study on preparation of low molecular weight heparin nanoliposomes and their oral absorption in rat. J China Pharm Univ 33:200–202

    CAS  Google Scholar 

  10. Bowtle W (2000) Lipid formulations for oral drug delivery. Pharm Tech Eur 12:20–30

    CAS  Google Scholar 

  11. New RRC (ed) (1990) Liposomes a practical approach. IRL/Oxford University Press, Oxford, UK

    Google Scholar 

  12. Reineccius G (1995) Liposomes for controlled release in the food industry. In: Risch S, Reineccius G (eds) Encapsulation and controlled release of food ingredients. American Chemical Society, Washington DC, pp 113–131

    Chapter  Google Scholar 

  13. Mozafari MR, Hasirci V (1998) Mechanism of calcium ion induced multilamellar vesicle-DNA interaction. J Microencapsul 15:55–65

    Article  CAS  PubMed  Google Scholar 

  14. Barenholz Y, Lasic D (eds) (1996) Handbook of nonmedical applications of liposomes, vol III. CRC, Boca Raton, FL

    Google Scholar 

  15. Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  PubMed  Google Scholar 

  16. Gabizon AA, Barenholz Y, Bialer M (1993) Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 10:703–708

    Article  CAS  PubMed  Google Scholar 

  17. Leserman L, Machy P, Zelphati O (1994) Immunoliposome-mediated delivery of nucleic acids: a review of our laboratory’s experience. J Liposome Res 4:107–119

    Article  CAS  Google Scholar 

  18. Jurima-Romet M, Barber RF, Demeester J, Shek PN (1990) Distribution studies of liposome-encapsulated glutathione administered to the lung. Int J Pharm 63:227–235

    Article  CAS  Google Scholar 

  19. Jurima-Romet M, Barber RF, Shek PN (1992) Liposomes and bronchoalveolar lavage fluid: release of vesicle-entrapped glutathione. Int J Pharm 88:201–210

    Article  CAS  Google Scholar 

  20. Pegg RB, Shahidi F (1999) Encapsulation and controlled release in food preservation. In: Shafiur Rahman M (ed) Handbook of food preservation. CRC, Boca Raton, FL, pp 611–665

    Google Scholar 

  21. Woodbury DJ, Richardson ES, Grigg AW, Welling RD, Knudson BH (2006) Reducing liposome size with ultrasound: bimodal size distributions. J Liposome Res 16:57–80

    Article  CAS  PubMed  Google Scholar 

  22. Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832

    Article  CAS  Google Scholar 

  23. Szoka FC, Papahadjopoulos D (1981) Liposomes: preparation and characterization. In: Knight CG (ed) Liposomes: from physical structure to therapeutic application. Elsevier, Amsterdam, pp 51–82

    Google Scholar 

  24. Chatterjee S, Banerjee DK (2002) Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. Methods Mol Biol 199:3–16

    CAS  PubMed  Google Scholar 

  25. Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Charac­terization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812:55–65

    Article  CAS  Google Scholar 

  26. MacDonald RC, MacDonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu L (1991) Small volume extrusion apparatus for preparation of large unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  CAS  PubMed  Google Scholar 

  27. Berger N, Sachse A, Bender J, Schubert R, Brandl M (2001) Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm 223:55–68

    Article  CAS  PubMed  Google Scholar 

  28. Vemuri S, Yu CD, Wangsatorntanakun V, Roosdorp N (1990) Large-scale production of liposome by a microfluidizer. Drug Dev Ind Pharm 16:2243–2256

    Article  CAS  Google Scholar 

  29. Thompson AK, Mozafari MR, Singh H (2007) The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 87:349–360

    Article  CAS  Google Scholar 

  30. Jafari SM, He YH, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization – a comparison. Int J Food Prop 9:475–485

    Article  CAS  Google Scholar 

  31. Silvestri S, Ganguly N, Tabibi E (1992) Predicting the effect of non-ionic surfactants on dispersed droplet radii in submicron oil-in-water emulsions. Pharm Res 9:1347–1350

    Article  CAS  PubMed  Google Scholar 

  32. Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry – a review. Int Dairy J 12:541–553

    Article  CAS  Google Scholar 

  33. Kim HY, Baianu IC (1991) Novel liposome microencapsulation techniques for food applications. Trends Food Sci Technol 2:55–61

    Article  CAS  Google Scholar 

  34. Sorgi FL, Huang L (1994) Large scale production of DC-Chol cationic liposomes by microfluidization. Int J Pharm 144:131–139

    Article  Google Scholar 

  35. Kikuchi H, Yamauchi H, Hirota S (1994) A polyol dilution method for mass production of liposomes. J Liposome Res 4:71–91

    Article  CAS  Google Scholar 

  36. Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70:95–111

    Article  CAS  PubMed  Google Scholar 

  37. Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C (1999) Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 16:251–256

    Article  CAS  PubMed  Google Scholar 

  38. Mozafari MR, Reed CJ, Rostron C (2007) Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie 62:205–209

    CAS  PubMed  Google Scholar 

  39. Dwivedi AM (2002) Residual solvent analysis in pharmaceuticals. Pharm Tech Eur 14:26–28

    CAS  Google Scholar 

  40. Silvestri S, Gabrielson G, Wu LL (1991) Effect of terminal block on the microfluidization induced degradation of model ABA block copolymer. Int J Pharm 71:65–71

    Article  CAS  Google Scholar 

  41. CenciaRohan L, Silvestri S (1993) Effect of solvent system on microfluidization-induced mechanical degradation. Int J Pharm 95:23–28

    Article  CAS  Google Scholar 

  42. Bodmeier R, Chen H (1993) Hydrolysis of cellulose acetate and cellulose acetate butyrate pseudolatexes prepared by a solvent evaporation microfluidization method. Drug Dev Ind Pharm 19:521–530

    Article  CAS  Google Scholar 

  43. Lagoueyte N, Paquin P (1998) Effects of microfluidization on the functional properties of xanthan Gum. Food Hydrocol 12:365–371

    Article  CAS  Google Scholar 

  44. Maa YF, Hsu CC (1999) Performance of sonication and microfluidization for liquid–liquid emulsification. Pharm Dev Technol 4:233–240

    Article  CAS  PubMed  Google Scholar 

  45. Kasaai MR, Charlet G, Paquin P, Arul J (2003) Fragmentation of chitosan by microfluidization process. Innov Food Sci Emerg Tech 4:403–413

    Article  CAS  Google Scholar 

  46. Mozafari MR, Reed CJ, Rostron C, Kocum C, Piskin E (2002) Construction of stable anionic liposome-plasmid particles using the heating method: a preliminary investigation. Cell Mol Biol Lett 7:923–927

    CAS  PubMed  Google Scholar 

  47. Mortazavi SM, Mohammadabadi MR, Khosravi-Darani K, Mozafari MR (2007) Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol 129:604–613

    Article  CAS  PubMed  Google Scholar 

  48. Mozafari MR, Reed CJ, Rostron C (2007) Prospects of anionic nanolipoplexes in nanotherapy: transmission electron microscopy and light scattering studies. Micron 38:787–795

    Article  CAS  PubMed  Google Scholar 

  49. Colas JC, Shi WL, Rao VSNM, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847

    Article  CAS  PubMed  Google Scholar 

  50. Mozafari MR, Reed CJ, Rostron C, Martin DS (2004) Transfection of human airway epithelial cells using a lipid-based vector prepared by the heating method. J Aerosol Med 17:100

    Google Scholar 

  51. Mozafari MR, Reed CJ, Rostron C (2003) 5-fluorouracil encapsulation in colloidal lipid particles: entrapment, release and cytotoxicity evaluation in an airway cell line. Drug Delivery to the Lungs XIV, London, England, pp. 180–183

    Google Scholar 

  52. Ozer AY (2007) Applications of light and electron microscopic techniques in liposome research. In: Mozafari MR (ed) Nanomaterials and nanosystems for biomedical applications. Springer, Dordrecht, The Netherlands, pp 145–153

    Chapter  Google Scholar 

  53. Rizwan SB, Dong YD, Boyd BJ, Rades T, Hook S (2007) Characterisation of biconti­nuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38:478–485

    Article  CAS  PubMed  Google Scholar 

  54. Edwards KA, Baeumner AJ (2006) Analysis of liposomes. Talanta 68:1432–1441

    Article  CAS  PubMed  Google Scholar 

  55. Chandaroy P, Sen A, Hui SW (2001) Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release 76:27–37

    Article  CAS  PubMed  Google Scholar 

  56. Mui B, Chow L, Hope MJ (2003) Extrusion technique to generate liposomes of defined size. Methods Enzymol 367:3–14

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mozafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mozafari, M.R. (2010). Nanoliposomes: Preparation and Analysis. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology, vol 605. Humana Press. https://doi.org/10.1007/978-1-60327-360-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-360-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-359-6

  • Online ISBN: 978-1-60327-360-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics