Skip to main content

Functional Liposomal Membranes for Triggered Release

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 605))

Abstract

Shortly after the discovery of liposomes (J Mol Biol 13:238–252, 1965), Gregoriadis et al. (Lancet 1:1313–1316, 1974) suggested their use as drug delivery vesicles. Since then there have been many developments in liposomal composition, efficient drug encapsulation and retention, stability, and targeting (Biochim Biophys Acta 1113:171–199, 1992). However, even though some of the very potent drug formulations in liposomes were clinically approved, in most cases the amount of drug passively released from such ideal, long-circulating, sterically stable liposomes was not enough to show a therapeutic effect (Cancer Chemother Pharmacol 49:201–210, 2002; Cancer Chemother Pharmacol 48:266–268, 2001; Eur J Cancer 37:2015–2022, 2001; Breast Cancer Res Treat 77:185–188, 2003; Lung Cancer 34:427–432, 2001; Cancer Chemother Pharmacol 50:131–136, 2002). It has been hypothesized that the enhanced release at the target site will significantly improve the specificity and efficacy of a liposomal drug (J Liposomes Res 8:299–335, 1998; Pharmaco Rev 51:691–744, 1999; Curr Opin Mol Ther 3:153–158, 2001). To solve this challenge, more research efforts were directed toward a triggered release, in response to a specific stimulus at a target site. Here, we present an engineered, bacterial channel protein as a remote-controlled nanovalve in sterically stable liposomes for a triggered release of the liposomal content on command.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  2. Gregoriadis G, Wills EJ, Swain CP, Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1:1313–1316

    Article  CAS  PubMed  Google Scholar 

  3. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199

    CAS  PubMed  Google Scholar 

  4. Terwogt JM, Groenewegen G, Pluim D, Maliepaard M, Tibben MM, Huisman A et al (2002) Phase I and pharmacokinetic study of SPI-77, a liposomal encapsulated dosage form of cisplatin. Cancer Chemother Pharmacol 49:201–210

    Article  Google Scholar 

  5. Thomas AL, O’Byrne K, Furber L, Jeffery K, Steward WP (2001) phase II study of Caelyx, liposomal doxorubicin: lack of activity in patients with advanced gastric cancer. Cancer Chemother Pharmacol 48:266–268

    Article  CAS  PubMed  Google Scholar 

  6. Harrington KJ, Lewanski C, Northcote AD, Whittaker J, Peters AM, Vile RG, Stewart JSW (2001) Phase II study of pegylated liposomal doxorubicin (Caelyx™) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur J Cancer 37:2015–2022

    Article  CAS  PubMed  Google Scholar 

  7. Rimassa L, Carnaghi C, Garassino I, Salvini P, Ginanni V, Gullo G et al (2003) Unexpected low efficacy of stealth liposomal doxorubicin (Caelyx) and vinorelbine in metastatic breast cancer. Breast Cancer Res Treat 77:185–188

    Article  CAS  PubMed  Google Scholar 

  8. Kim ES, Lu C, Khuri FR, Tonda M, Glisson BS, Liu D et al (2001) A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 34:427–432

    Article  CAS  PubMed  Google Scholar 

  9. Vail DM, Kurzman ID, Glawe PC, O’Brien MG, Chun R, Garrett LD et al (2002) STEALTH liposome-encapsulated cisplatin (SPI-77) versus carboplatin as adjuvant therapy for spontaneously arising osteosarcoma (OSA) in the dog: a randomized multicenter clinical trial. Cancer Chemother Pharmacol 50:131–136

    Article  CAS  PubMed  Google Scholar 

  10. Bally MB, Lim H, Cullis PR, Mayer LD (1998) Controlling the drug delivery attributes of lipidbased drug formulations. J Liposomes Res 8:299–335

    Article  CAS  Google Scholar 

  11. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmaco Rev 51:691–744

    CAS  Google Scholar 

  12. Fenske DB, MacLachlan L, Cullis PR (2001) Long-circulating vectors for the systemic delivery of genes. Curr Opin Mol Ther 3:153–158

    CAS  PubMed  Google Scholar 

  13. Guo X, Szoka FC (2003) Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc Chem Res 36:335–341

    Article  CAS  PubMed  Google Scholar 

  14. Kocer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309:755–758

    Article  CAS  PubMed  Google Scholar 

  15. Kocer A, Walko M, Bulten E, Halza E, Feringa BL, Meijberg W (2006) Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew Chem Int Ed Engl 45:3126–3130

    Article  CAS  PubMed  Google Scholar 

  16. Kocer A, Walko M, Feringa BL (2007) Synthesis and Utilization of reversible and irreversible light activated nanovalves derived from the channel protein MscL. Nat Protoc 2:1426–1437

    Article  CAS  PubMed  Google Scholar 

  17. Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97

    Article  CAS  PubMed  Google Scholar 

  18. Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631–636

    Article  CAS  PubMed  Google Scholar 

  19. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268

    Article  CAS  PubMed  Google Scholar 

  20. Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948

    Article  CAS  PubMed  Google Scholar 

  21. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct Biol 9:696–703

    Article  CAS  PubMed  Google Scholar 

  22. Van den Bogaart G, Krasnikov V, Poolman B (2007) Dual-colo fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel. MscL Biophys J 92:1233–1240

    Article  Google Scholar 

  23. Sukharev S, Anishkin A (2004) Mechano­sensitive channels: what can we learn from ‘simple’ model systems? Trends Neurosci 27:345–351

    Article  CAS  PubMed  Google Scholar 

  24. Anishkin A, Chiang CS, Sukharev S (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125:155–170

    Article  CAS  PubMed  Google Scholar 

  25. Yoshimura K, Batiza A, Kung C (2001) Chemically charging the pore constriction opens the mechanosensitive channel MscL. Biophys J 80:2198–2206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor George Robillard for his critical reading of the chapter. This work was supported by Biomade Technology Foundation, NanoNed, and The Netherlands Organization for Scientific Research (NWO-VIDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armagğan Koçer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Koçer, A. (2010). Functional Liposomal Membranes for Triggered Release. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology, vol 605. Humana Press. https://doi.org/10.1007/978-1-60327-360-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-360-2_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-359-6

  • Online ISBN: 978-1-60327-360-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics