Skip to main content

Methods to Study How Replication Fork Helicases Unwind DNA

  • Protocol
  • First Online:
Helicases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

Replication fork helicases unwind DNA at a replication fork, providing polymerases with single-stranded DNA templates for replication. In bacteria, DnaB unwinds DNA at a replication fork, while in archaeal and eukaryotic organisms the Mcm proteins catalyze replication fork unwinding. Unwinding in archaea is catalyzed by a single Mcm protein that forms multimeric rings, whereas eukaryotic helicase activity is catalyzed by the heterohexameric Mcm2–7 complex acting in concert with Cdc45 and the GINS complex. A subcomplex of eukaryotic Mcm proteins, the Mcm4,6,7 complex, unwinds DNA in vitro, and studies of this assembly reveal insight into the mechanism of the eukaryotic Mcm helicase. Detailed methods for the investigation of replication fork helicase mechanism are described in this chapter. Described herein are methods for the design of DNA substrates for unwinding and branch migration studies, annealing DNA, purifying replication fork helicase proteins, and analyzing DNA unwinding activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labib K., Tercero J. A., and Diffley J. F. X. (2000) Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647.

    Article  PubMed  CAS  Google Scholar 

  2. Pacek M., Tutter A., Kubota Y., Takisawa H., and Walter J. (2006) Localization of MCM2–7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21, 581–587.

    Article  PubMed  CAS  Google Scholar 

  3. Calzada A., Hodgson B., Kanemaki M., Bueno A., and Labib K. (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905–1919.

    Article  PubMed  CAS  Google Scholar 

  4. Moyer S., Lewis P., and Botchan M. (2006) Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236–10241.

    Article  PubMed  CAS  Google Scholar 

  5. Bochman M. and Schwacha A. (2008) The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 31, 287–293.

    Article  PubMed  CAS  Google Scholar 

  6. Shechter D. F., Ying C. Y., and Gautier J. (2000) The intrinsic DNA helicase activity of Methanobacterium thermoautotrohicum delta H minichromosome maintenance protein. J. Biol. Chem. 275, 15049–15059.

    Article  PubMed  CAS  Google Scholar 

  7. Kelman Z., Lee J.-K., and Hurwitz J. (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum ΔH contains DNA helicase activity. Proc. Natl. Acad. Sci. USA 96, 14783–14788.

    Article  PubMed  CAS  Google Scholar 

  8. Chong J. P. J., Hayashi M. K., Simon M. N., Xu R.-M., and Stillman B. (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. U.S.A. 97, 1530–1535.

    Article  PubMed  CAS  Google Scholar 

  9. Costa A., Pape T., van Heel M., Brick P., Patwardhan A., and Onesti S. (2006) Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity. Nucleic Acids Res. 34, 5829–5838.

    Article  PubMed  CAS  Google Scholar 

  10. Gomez-Llorente Y., Fletcher R., Chex X., Carazo X., and San Martin C. (2005) Polymorphism and double hexamer structure in the archaeal minichromosome maintenance (MCM) helicase from Methanobacterium thermoautrophicum. J. Biol. Chem. 280, 40909–40915.

    Article  PubMed  CAS  Google Scholar 

  11. Fletcher R., Shen J., Gomez-Llorente Y., Martin C. S., Carazo J. M., and Chen X. (2005) Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM. J. Biol. Chem. 280, 42405–42410.

    Article  PubMed  CAS  Google Scholar 

  12. Ishimi Y. (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508–24513.

    Article  PubMed  CAS  Google Scholar 

  13. Lee J.-K., and Hurwitz J. (2000) Isolation and characterization of various complexes of the minichromosome maintenance proteins of Schizosaccharomyces pombe. J. Biol. Chem. 275, 18871–18878.

    Article  PubMed  CAS  Google Scholar 

  14. You Z., Komamura Y., and Ishimi Y. (1999) Biochemical analysis of the intrinsic Mcm4-Mcm6-Mcm7 DNA helicase activity. Mol. Cell. Biol. 19, 8003–8015.

    PubMed  CAS  Google Scholar 

  15. Kaplan D. L., Davey M. J., and O‘Donnell M. (2003) Mcm4,6,7 uses a ‘pump in ring’ mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 278, 49171–49182.

    Article  PubMed  CAS  Google Scholar 

  16. Lee J.-K., and Hurwitz J. (2001) Processive DNA helicase activity of the minichromosome maintenance proteins 4,6, and 7 complex requires forked DNA structures. Proc. Natl. Acad. Sci. USA 98, 54–59.

    Article  PubMed  CAS  Google Scholar 

  17. Kaplan D. L., and Steitz T. A. (1999) DnaB from Thermus aquaticus unwinds forked duplex DNA with an asymmetric tail length dependence. J. Biol. Chem. 274, 6889–6897.

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan D. L. (2000) The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 301, 285–299.

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan D. L., and O’Donnell M. (2002) DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 10, 647–657.

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan D. L., and O’Donnell M. (2004) Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol. Cell 15, 453–465.

    Article  PubMed  CAS  Google Scholar 

  21. Kaplan D. and O’Donnell M. (2006) RuvA is a sliding collar that protects holliday junctions from unwinding while promoting branch migration. J. Mol. Biol. 355, 473–490.

    Article  PubMed  CAS  Google Scholar 

  22. Yuzhakov A., Turner J., and O’Donnell M. (1996) Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 86, 877–886.

    Article  PubMed  CAS  Google Scholar 

  23. Davey M. J., Indiani C., and O’Donnell M. (2003) Reconstitution of the Mcm2–7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 278, 4491–4499.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Thomas A. Steitz and Dr. Mike O’Donnell for their support and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kaplan, D.L., Bruck, I. (2009). Methods to Study How Replication Fork Helicases Unwind DNA. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics