Skip to main content

Purification and Characterization of RecQ Helicases of Plants

  • Protocol
  • First Online:
Book cover Helicases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

Helicases are essential for DNA metabolism. Different helicases have different properties tailored to fulfill their specific tasks. RecQ-helicases are known to be important in DNA repair and DNA recombination. In higher organisms several RecQ homologues can be identified. For instance, seven RecQ homologues were identified in the model plant Arabidopsis thaliana. Specialization of those proteins can possibly be reflected by differences in their biochemical substrate spectrum. Moreover, a helicase of interest might be defined by its biochemical properties as a functional ortholog of a RecQ helicase in other organisms. In this chapter the initial steps that will provide the basis for a proper biochemical characterization are given. After the description of the expression of the helicase of interest in the heterologous host Escherichia coli, its purification with the help of two affinity tags and the preparation of a model DNA substrate for the strand displacement assay are described. Finally, it is shown how this model substrate can be used to ensure the purity of the enzymatic preparation of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma S., Doherty K. M., and Brosh R. M., Jr. (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem. J. 398, 319–337.

    Article  PubMed  CAS  Google Scholar 

  2. Bachrati C. Z. and Hickson I. D. (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374, 577–606.

    Article  PubMed  CAS  Google Scholar 

  3. Hanada K. and Hickson I. D. (2007) Molecular genetics of RecQ helicase disorders. Cell Mol. Life. Sci. 64, 2306–2322.

    Article  PubMed  CAS  Google Scholar 

  4. Hickson I. D. (2003) RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3, 169–178.

    Article  PubMed  CAS  Google Scholar 

  5. Opresko P. L., Cheng W. H., and Bohr V. A. (2004) Junction of RecQ helicase biochemistry and human disease. J. Biol. Chem. 279, 18099–18102.

    Article  PubMed  CAS  Google Scholar 

  6. Hartung F., Plchova H., and Puchta H. (2000) Molecular characterisation of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res. 28, 4275–4282.

    Article  PubMed  CAS  Google Scholar 

  7. Hartung F., Suer S., and Puchta H. (2007) Two closely related RecQ helicases have antagonistic roles in homologous recombination and DNA repair in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 18836–18841.

    Article  PubMed  CAS  Google Scholar 

  8. Popuri V., Bachrati C. Z., Muzzolini L., et al. (2008) The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J. Biol. Chem. 283, 17766–17776.

    Article  PubMed  CAS  Google Scholar 

  9. Kobbe D., Blanck S., Demand K., Focke M., and Puchta H. (2008) AtRECQ2, a RecQ-helicase homologue from Arabidopsis thaliana, is able to disrupt different recombinogenic DNA-structures in vitro. Plant J. 55, 397–405.

    Article  PubMed  CAS  Google Scholar 

  10. Tuteja N. and Tuteja R. (2004) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur. J. Biochem. 271, 1849–1863.

    Article  PubMed  CAS  Google Scholar 

  11. Brosh R. M., Jr., Orren D. K., Nehlin J. O., et al. (1999) Functional and physical interaction between WRN helicase and human replication protein A. J. Biol. Chem. 274, 18341–18350.

    Article  PubMed  CAS  Google Scholar 

  12. Studier F. W. and Moffatt B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  13. Stofko-Hahn R. E., Carr D. W., and Scott J. D. (1992) A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett. 302, 274–278.

    Article  PubMed  CAS  Google Scholar 

  14. Chaga G. S. (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J. Biochem. Biophys. Methods 49, 313–334.

    Article  PubMed  CAS  Google Scholar 

  15. Brosh R. M., Jr., Opresko P. L., and Bohr V. A. (2006) Enzymatic mechanism of the WRN helicase/nuclease. Methods Enzymol. 409, 52–85.

    Article  PubMed  CAS  Google Scholar 

  16. Bachrati C. Z. and Hickson I. D. (2006) Analysis of the DNA unwinding activity of RecQ family helicases. Methods Enzymol. 409, 86–100.

    Article  PubMed  CAS  Google Scholar 

  17. Sambrook J. and Russell D. W. (2001) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  18. Terpe K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72, 211–222.

    Article  PubMed  CAS  Google Scholar 

  19. Grossman T. H., Kawasaki E. S., Punreddy S. R., and Osburne M. S. (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209, 95–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Katharina Demand and Sandra Blanck for active involvement in the processes described. Furthermore, we thank Helena Plchova, Jasmin Duerr, Verena Geuting, and Sandra Thies for sharing their experiences on the different methods and Sabrina Hettinger and Carina Moock for skillful technical assistance. This work has been supported by the DFG with grant number Pu 137/8.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kobbe, D., Focke, M., Puchta, H. (2009). Purification and Characterization of RecQ Helicases of Plants. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics