Skip to main content
Book cover

Helicases pp 155–172Cite as

Single-Molecule Studies of RecBCD

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

RecBCD is a processive molecular motor composed of two independent helicase domains and a nuclease domain. Understanding the molecular mechanism of its motor activity involves, in part, determining RecBCD’s translocation properties (e.g., velocity, propensity to pause, pause duration). Single-molecule techniques, in general, and optical trapping, specifically, provide for measuring the translocation of individual molecules along DNA. We developed a high-spatial resolution optical-trapping assay for RecBCD. The RecBCD is anchored to the surface via a genetically engineered biotin. This RecBCD-bio exhibited native activity, as measured by biochemical assays. Motion is continuous down to a detection limit of 2 nm, implying a unitary step size below 6 base pairs. Unexpectedly, the catalytic rate changes abruptly and persists at different values for tens of seconds. This technically demanding, high-resolution optical-trapping assay is complemented by a simpler single-molecule assay—the tethered particle motion assay.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bianco P. R., Brewer L. R., Corzett M., Balhorn R., Yeh Y., Kowalczykowski S. C., and Baskin R. J. (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378.

    Article  PubMed  CAS  Google Scholar 

  2. Roman L. J. and Kowalczykowski S. C. (1989) Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28, 2863–2873.

    Article  PubMed  CAS  Google Scholar 

  3. Spies M., Bianco P. R., Dillingham M. S., Handa N., Baskin R. J., and Kowalczykowski S. C. (2003) A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114, 647–654.

    Article  PubMed  CAS  Google Scholar 

  4. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., and Rehrauer W. M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465.

    PubMed  CAS  Google Scholar 

  5. Perkins T. T., Li H. W., Dalal R. V., Gelles J., and Block S. M. (2004) Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648.

    Article  PubMed  CAS  Google Scholar 

  6. Weiss S. (1999) Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683.

    Article  PubMed  CAS  Google Scholar 

  7. Mehta A. D., Rief M., Spudich J. A., Smith D. A., and Simmons R. M. (1999) Single-molecule biomechanics with optical methods. Science 283, 1689–1695.

    Article  PubMed  CAS  Google Scholar 

  8. Bustamante C., Bryant Z., and Smith S. B. (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427.

    Article  PubMed  Google Scholar 

  9. Wang M. D., Schnitzer M. J., Yin H., Landick R., Gelles J., and Block S. M. (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907.

    Article  PubMed  CAS  Google Scholar 

  10. Abbondanzieri E. A., Greenleaf W. J., Shaevitz J. W., Landick R., and Block S. M. (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465.

    Article  PubMed  CAS  Google Scholar 

  11. Wuite G. J., Smith S. B., Young M., Keller D., and Bustamante C. (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106.

    Article  PubMed  CAS  Google Scholar 

  12. Dumont S., Cheng W., Serebrov V., Beran R. K., Tinoco I., Jr., Pyle A. M., and Bustamante C. (2006) RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108.

    Article  PubMed  CAS  Google Scholar 

  13. Smith D. E., Tans S. J., Smith S. B., Grimes S., Anderson D. L., and Bustamante C. (2001) The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413, 748–752.

    Article  PubMed  CAS  Google Scholar 

  14. Ha T., Rasnik I., Cheng W., Babcock H. P., Gauss G. H., Lohman T. M., and Chu S. (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641.

    Article  PubMed  CAS  Google Scholar 

  15. Myong S., Bruno M. M., Pyle A. M., and Ha T. (2007) Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317, 513–516.

    Article  PubMed  CAS  Google Scholar 

  16. Dohoney K. M. and Gelles J. (2001) Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374.

    Article  PubMed  CAS  Google Scholar 

  17. Perkins T. T., Dalal R. V., Mitsis P. G., and Block S. M. (2003) Sequence-dependent pausing of single lambda exonuclease molecules. Science 301, 1914–1918.

    Article  PubMed  CAS  Google Scholar 

  18. Svoboda K. and Block S. M. (1994) Biological Applications of Optical Forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285.

    Article  PubMed  CAS  Google Scholar 

  19. Neuman K. C. and Block S. M. (2004) Optical trapping. Rev. Sci. Instrum. 75, 2787–2809.

    Article  PubMed  CAS  Google Scholar 

  20. Mehta A. D., Pullen K. A., and Spudich J. A. (1998) Single molecule biochemistry using optical tweezers. FEBS Lett. 430, 23–27.

    Article  PubMed  CAS  Google Scholar 

  21. Perkins T. T. (2009) Optical traps for single molecule biophysics: a primer. Laser Photonics Rev., 3, 203–220.

    Article  CAS  Google Scholar 

  22. Noji H., Yasuda R., Yoshida M., and Kinosita K., Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature 386, 299–302.

    Article  PubMed  CAS  Google Scholar 

  23. Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., and Gelles J. (1995) Transcription against an applied force. Science 270, 1653–1657.

    Article  PubMed  CAS  Google Scholar 

  24. Wang M. D., Yin H., Landick R., Gelles J., and Block S. M. (1997) Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346.

    Article  PubMed  CAS  Google Scholar 

  25. Schafer D. A., Gelles J., Sheetz M. P., and Landick R. (1991) Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–448.

    Article  PubMed  CAS  Google Scholar 

  26. Yin H., Landick R., and Gelles J. (1994) Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys. J. 67, 2468–2478.

    Article  PubMed  CAS  Google Scholar 

  27. Seol Y., Li J., Nelson P. C., Perkins T. T., and Betterton M. D. (2007) Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6–7 µm. Biophys. J. 93, 4360–4373.

    Article  PubMed  CAS  Google Scholar 

  28. Visscher K., Gross S. P., and Block S. M. (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quant. Electr. 2, 1066–1076.

    Article  CAS  Google Scholar 

  29. Pralle A., Prummer M., Florin E.-L., Stelzer E. H. K., and Horber J. K. H. (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ashley Carter for critical reading of the manuscript, and Ashley Carter and D. Hern Paik for figure preparation. This work was supported by a Burroughs Wellcome Fund Career Award in the Biomedical Sciences (TTP), the National Science Foundation (NSF Phys-0404286 to TTP), National Research Council (Taiwan; to H.-W.L.), and National Institute of Standards and Technology (NIST). Mention of commercial products is for information only; it does not imply NIST recommendation or endorsement, nor does it imply that the products mentioned are necessarily the best available for the purpose. TTP is a staff member of NIST’s Quantum Physics Division.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Perkins, T.T., Li, HW. (2009). Single-Molecule Studies of RecBCD. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics