Skip to main content

Real-Time Quantitative PCR, Pathogen Detection and MIQE

  • Protocol
  • First Online:
PCR Detection of Microbial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 943))

Abstract

Nucleic acids are the ultimate biomarker and real-time PCR (qPCR) is firmly established as the method of choice for nucleic acid detection. Together, they allow the accurate, sensitive and specific identification of pathogens, and the use of qPCR has become routine in diagnostic laboratories. The reliability of qPCR-based assays relies on a combination of optimal sample selection, assay design and validation as well as appropriate data analysis and the “Minimal Information for the Publication of real-time PCR” (MIQE) guidelines aim to improve both the reliability of assay design as well as the transparency of reporting, essential conditions if qPCR is to remain the benchmark technology for molecular diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    Article  PubMed  CAS  Google Scholar 

  2. Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin SE, Horowitz D, Dixon JM, Brenan CJ (2006) Nanoliter high throughput quantitative PCR. Nucleic Acids Res 34:e123

    Article  PubMed  Google Scholar 

  3. Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35:4223–4237

    Article  PubMed  CAS  Google Scholar 

  4. Cho YK, Kim J, Lee Y, Kim YA, Namkoong K, Lim H, Oh KW, Kim S, Han J, Park C, Pak YE, Ki CS, Choi JR, Myeong HK, Ko C (2006) Clinical evaluation of micro-scale chip-based PCR system for rapid detection of hepatitis B virus. Biosens Bioelectron 21: 2161–2169

    Article  PubMed  CAS  Google Scholar 

  5. Kaigala GV, Huskins RJ, Preiksaitis J, Pang XL, Pilarski LM, Backhouse CJ (2006) Automated screening using microfluidic chip-based PCR and product detection to assess risk of BK virus-associated nephropathy in renal transplant recipients. Electrophoresis 27:3753–3763

    Article  PubMed  CAS  Google Scholar 

  6. Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, Crokaert F, Denning DW, Donnelly JP, Edwards JE, Erjavec Z, Fiere D, Lortholary O, Maertens J, Meis JF, Patterson TF, Ritter J, Selleslag D, Shah PM, Stevens DA, Walsh TJ (2002) Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 34:7–14

    Article  PubMed  CAS  Google Scholar 

  7. Klingspor L, Loeffler J (2009) Aspergillus PCR formidable challenges and progress. Med Mycol 47(Suppl 1):S241–S247

    Article  PubMed  CAS  Google Scholar 

  8. Duval SM, Donnelly JP, Barnes R, Löffler J (2008) PCR-based methods with aspergillosis as a model. J Invasive Fungal Infect 2:46–51

    Google Scholar 

  9. Perlin DS, Zhao Y (2009) Molecular diagnostic platforms for detecting Aspergillus. Med Mycol 47(Suppl 1):S223–S232

    Article  PubMed  CAS  Google Scholar 

  10. White PL, Bretagne S, Klingspor L, Melchers WJ, McCulloch E, Schulz B, Finnstrom N, Mengoli C, Barnes RA, Donnelly JP, Loeffler J (2010) Aspergillus PCR: one step closer to standardization. J Clin Microbiol 48:1231–1240

    Article  PubMed  CAS  Google Scholar 

  11. Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP (2009) Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis 9:89–96

    Article  PubMed  CAS  Google Scholar 

  12. Khot PD, Fredricks DN (2009) PCR-based diagnosis of human fungal infections. Expert Rev Anti Infect Ther 7:1201–1221

    Article  PubMed  CAS  Google Scholar 

  13. Garson JA, Huggett JF, Bustin SA, Pfaffl MW, Benes V, Vandesompele J, Shipley GL (2009) Unreliable real-time PCR analysis of human endogenous retrovirus-W (HERV-W) RNA expression and DNA copy number in multiple sclerosis. AIDS Res Hum Retroviruses 25:377–378

    Article  PubMed  Google Scholar 

  14. de Vries TJ, Fourkour A, Punt CJ, van de Locht LT, Wobbes T, van den BS, de Rooji MJ, Mensink EJ, Ruiter DJ, van Muijen GN (1999) Reproducibility of detection of tyrosinase and MART-1 transcripts in the peripheral blood of melanoma patients: a quality control study using real-time quantitative RT-PCR. Br J Cancer 80:883–891

    Article  PubMed  Google Scholar 

  15. Peccoud J, Jacob C (1996) Theoretical uncertainty of measurements using quantitative polymerase chain reaction. Biophys J 71:101–108

    Article  PubMed  CAS  Google Scholar 

  16. Afzal MA, Osterhaus AD, Cosby SL, Jin L, Beeler J, Takeuchi K, Kawashima H (2003) Comparative evaluation of measles virus-specific RT-PCR methods through an international collaborative study. J Med Virol 70:171–176

    Article  PubMed  CAS  Google Scholar 

  17. Niesters HG (2001) Quantitation of viral load using real-time amplification techniques. Methods 25:419–429

    Article  PubMed  CAS  Google Scholar 

  18. Niesters HG (2004) Molecular and diagnostic clinical virology in real time. Clin Microbiol Infect 10:5–11

    Article  PubMed  CAS  Google Scholar 

  19. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cave H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, Gonzalez M, Viehmann S, Malec M, Saglio G, van Dongen JJ (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 17:2318–2357

    Article  PubMed  CAS  Google Scholar 

  20. Muller MC, Hordt T, Paschka P, Merx K, La Rosee P, Hehlmann R, Hochhaus A (2004) Standardization of preanalytical factors for minimal residual disease analysis in chronic myelogenous leukemia. Acta Haematol 112:30–33

    Article  PubMed  Google Scholar 

  21. Griffiths LJ, Anyim M, Doffman SR, Wilks M, Millar MR, Agrawal SG (2006) Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. J Med Microbiol 55:1187–1191

    Article  PubMed  CAS  Google Scholar 

  22. Fredricks DN, Smith C, Meier A (2005) Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol 43:5122–5128

    Article  PubMed  CAS  Google Scholar 

  23. Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155–166

    PubMed  Google Scholar 

  24. Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238

    Article  PubMed  CAS  Google Scholar 

  25. Millon L, Grenouillet F, Crouzet J, Larosa F, Loewert S, Bellanger AP, Deconinck E, Legrand F (2010) False-positive Aspergillus real-time PCR assay due to a nutritional supplement in a bone marrow transplant recipient with GVH disease. Med Mycol 48:661–664

    Article  PubMed  CAS  Google Scholar 

  26. Monpoeho S, Coste-Burel M, Costa-Mattioli M, Besse B, Chomel JJ, Billaudel S, Ferre V (2002) Application of a real-time polymerase chain reaction with internal positive control for detection and quantification of enterovirus in cerebrospinal fluid. Eur J Clin Microbiol Infect Dis 21:532–536

    Article  PubMed  CAS  Google Scholar 

  27. Nolan T, Hands RE, Ogunkolade BW, Bustin SA (2006) SPUD: a qPCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem 351:308–310

    Article  PubMed  CAS  Google Scholar 

  28. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  29. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK Jr, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Novere NL, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ Jr, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896

    Article  PubMed  CAS  Google Scholar 

  30. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  31. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJ, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR III, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    Article  PubMed  CAS  Google Scholar 

  32. Lefever S, Hellemans J, Pattyn F, Przybylski DR, Taylor C, Geurts R, Untergasser A, Vandesompele J (2009) RDML: structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res 37:2066–2069

    Article  Google Scholar 

  33. Hammerle-Fickinger A, Riedmaier I, Becker C, Meyer HH, Pfaffl MW, Ulbrich SE (2010) Validation of extraction methods for total RNA and miRNA from bovine blood prior to quantitative gene expression analyses. Biotechnol Lett 32(1):35–44

    Article  PubMed  CAS  Google Scholar 

  34. Tichopad A, Kitchen R, Riedmaier I, Becker C, Stahlberg A, Kubista M (2009) Design and optimization of reverse-transcription quantitative PCR experiments. Clin Chem 55:1816–1823

    Article  PubMed  CAS  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:E45

    Article  PubMed  CAS  Google Scholar 

  37. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  38. Yuan JS, Wang D, Stewart CN Jr (2008) Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol J 3:112–123

    Article  PubMed  CAS  Google Scholar 

  39. Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85

    Article  PubMed  Google Scholar 

  40. Ramirez M, Castro C, Palomares JC, Torres MJ, Aller AI, Ruiz M, Aznar J, Martin-Mazuelos E (2009) Molecular detection and identification of Aspergillus spp. from clinical samples using real-time PCR. Mycoses 52:129–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Bustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Johnson, G., Nolan, T., Bustin, S.A. (2013). Real-Time Quantitative PCR, Pathogen Detection and MIQE. In: Wilks, M. (eds) PCR Detection of Microbial Pathogens. Methods in Molecular Biology, vol 943. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-353-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-353-4_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-352-7

  • Online ISBN: 978-1-60327-353-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics