Skip to main content

Retrogradely Transported Neuronal Tracers Combined with Immunohistochemistry Using Free-Floating Brain Sections

  • Protocol
  • First Online:
  • 4742 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 611))

Abstract

Immunohistochemistry has been used widely for the detection of proteins in brain tissue. The process can be performed on free-floating sections, but thicker sections are required than those required for processing on slides due to the “wear and tear” of the constant agitation that free-floating sections undergo. Immunohistochemical detection of molecules of interest such as receptors, neurotransmitters or intracellular signaling molecules is used to determine the distribution of these molecules in tissues. However, it is often of interest to simultaneously determine where the neurons under investigation may project and whether they are activated by a specific stimulus. In this chapter, we will focus on protocols that we use to combine the detection of (i) Fos-positive neurons to detect increased neuronal activity, (ii) nicotine adenine dinucleotide phosphate-diaphorase (NADPH-d) to detect nitric oxide synthase, and (iii) retrogradely transported tracers to identify specific projections.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sagar, S.M., Sharp, F.R., and Curran, T. (1988) Expression of C-fos protein in the brain: metabolic mapping at the cellular level. Science 240, 1328–1331.

    Article  PubMed  CAS  Google Scholar 

  2. Hughes, P., Lawlor, P., and Dragunow, M. (1992) Basal expression of Fos, Fos-related, Jun, and Krox 24 proteins in rat hippocampus. Mol. Brain Res. 13, 355–357.

    Article  PubMed  CAS  Google Scholar 

  3. Dragunow, M. and Faull, R. (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Methods 29, 261–265.

    Article  PubMed  CAS  Google Scholar 

  4. Hughes, P. and Dragunow, M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47, 133–178.

    PubMed  CAS  Google Scholar 

  5. Curran, T., Abate, C., Baker, S., Kerppola, T., and Xanthoudakis, S. (1993) The regulation of c-fos – too much is never enough. Adv. Second Messenger Phosphoprotein Res. 28, 271–277.

    PubMed  CAS  Google Scholar 

  6. Kerppola, T. and Curran, T. (1995) Transcription – Zen and the art of Fos and Jun. Nature 373, 199–200.

    Article  PubMed  CAS  Google Scholar 

  7. Curran, T. and Morgan, J.I. (1995) Fos: an immediate-early transcription factor in neurons. J. Neurobiol. 26, 403–412.

    Article  PubMed  CAS  Google Scholar 

  8. Smeyne, R.J., Vendrell, M., Hayward, M., Baker, S.J., Miao, G.G., Schilling, K., Robertson, L.M., Curran, T., and Morgan, J.I. (1993) Continuous c-fos expression precedes programmed cell death in vivo. Nature 363, 166–169.

    Article  PubMed  CAS  Google Scholar 

  9. Morgan, J.I. and Curran, T. (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 12, 459–462.

    Article  PubMed  CAS  Google Scholar 

  10. Morgan, J.I. and Curran, T. (1991) Proto-oncogene transcription factors and epilepsy. Trends Pharmacol. Sci. 12, 343–349.

    Article  PubMed  CAS  Google Scholar 

  11. Morgan, J.I. and Curran, T. (1986) Role of ion influx in the control of c-fos expression. Nature 322, 552–555.

    Article  PubMed  CAS  Google Scholar 

  12. Badoer, E., McKinley, M.J., Oldfield, B.J., and McAllen, R.M. (1992) Distribution of hypothalamic, medullary and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Res. 582, 323–328.

    Article  PubMed  CAS  Google Scholar 

  13. Badoer, E., McKinley, M.J., Oldfield, B.J., and McAllen, R.M. (1993) A comparison of non-hypotensive and hypotensive hemorrhage on Fos expression in spinally-projecting neurons of the paraventricular nucleus and rostral ventrolateral medulla. Brain Res. 610, 216–223.

    Article  PubMed  CAS  Google Scholar 

  14. Badoer, E. (1994) The cardiovascular role of the paraventricular nucleus. Proc. Aust. Physiol. Pharmacol. Soc. 25, 20–25.

    Google Scholar 

  15. Badoer, E., Oldfield, B.J., and McKinley, M.J. (1993) Haemorrhage-induced production of Fos in neurons of the lamina terminalis: role of endogenous angiotensin II. Neurosci. Lett. 159, 151–154.

    Article  PubMed  CAS  Google Scholar 

  16. Badoer, E., McKinley, M.J., Oldfield, B.J., and McAllen, R.M. (1994) Localization of barosensitive neurons in the caudal ventrolateral medulla which project to the rostral ventrolateral medulla. Brain Res. 657, 258–268.

    Article  PubMed  CAS  Google Scholar 

  17. Oldfield, B.J., Badoer, E., Hards, D.K., and McKinley, M.J. (1994) Fos production in retrogradely labeled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience 60, 255–262.

    Article  PubMed  CAS  Google Scholar 

  18. McKinley, M.J., Badoer, E., Vivas, L., and Oldfield, B.J. (1995) Comparison of c-fos expression in the lamina terminalis of conscious rats after intravenous or intracerebroventricular angiotensin. Brain Res. Bull. 37, 131–137.

    Article  PubMed  CAS  Google Scholar 

  19. Badoer, E., McKinlay, D., Trigg, L., and McGrath, B.P. (1997) Distribution of activated neurons in the rabbit brain following a volume load. Neuroscience 81, 1065–1077.

    Article  PubMed  CAS  Google Scholar 

  20. Badoer, E. and McKinlay, D. (1997) Effect of intravenous angiotensin II on Fos distribution and drinking behaviour in the rabbit. Am. J. Physiol. 272, R1515–R1524.

    PubMed  CAS  Google Scholar 

  21. Badoer, E. and Merolli, J. (1998) Neurons in the hypothalamic paraventricular nucleus that project to the rostral ventrolateral medulla are activated by haemorrhage. Brain Res. 791, 317–320.

    Article  PubMed  CAS  Google Scholar 

  22. Shafton, A.D., Ryan, A.R., and Badoer, E. (1998) Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res. 801, 239–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Badoer, E. (2010). Retrogradely Transported Neuronal Tracers Combined with Immunohistochemistry Using Free-Floating Brain Sections. In: Hewitson, T., Darby, I. (eds) Histology Protocols. Methods in Molecular Biology, vol 611. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-345-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-345-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-344-2

  • Online ISBN: 978-1-60327-345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics