Skip to main content

Gene Selection with the δ-Sequence Method

  • Protocol
  • First Online:
Book cover Statistical Methods for Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 972))

Abstract

In this chapter, we discuss a method of selecting differentially expressed genes based on a newly discovered structure termed as the δ-sequence. Together with the nonparametric empirical Bayes methodology, it leads to dramatic gains in terms of the mean numbers of true and false discoveries, and in the stability of the results of testing. Furthermore, its outcomes are entirely free from the log-additive array-specific technical noise. The new paradigm offers considerable scope for future developments in this area of methodological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efron B (2003) Robbins, empirical Bayes and microarrays. Ann Stat 31:366–378

    Article  Google Scholar 

  2. Efron B (2004) Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J Am Stat Assoc 99:96–104

    Article  Google Scholar 

  3. Efron B, Tibshrani R, Storey JD, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96:1151–1160

    Article  Google Scholar 

  4. Allison DB, Gadbury GL, Heo M, Fern’andez JR, Les C-K, Prolla JA, Weindruch R (2002) A mixture model approach for the analysis of microarray gene expression data. Comput Stat Data Anal 39:1–20

    Article  Google Scholar 

  5. Dalmasso C, Broët P, Moreau T (2005) A simple procedure for estimating the false discovery rate. Bioinformatics 21(5):660–668

    Article  PubMed  CAS  Google Scholar 

  6. Pounds S, Cheng C (2004) Improving false discovery rate estimation. Bioinformatics 20:1737–1745

    Article  PubMed  CAS  Google Scholar 

  7. Pounds S, Morris SW (2003) Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19:1236–1242

    Article  PubMed  CAS  Google Scholar 

  8. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

    Article  PubMed  CAS  Google Scholar 

  9. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B 64:479–498

    Article  Google Scholar 

  10. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  PubMed  CAS  Google Scholar 

  11. Tsai C-A, Hsueh H-M, Chen JJ (2003) Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics 59:1071–1081

    Article  PubMed  Google Scholar 

  12. Qiu X, Klebanov L, Yakovlev A (2005) Correlation between gene expression levels and limitations of the empirical Bayes methodology for finding differentially expressed genes. Stat Appl Genet Mol Biol 4:34

    Google Scholar 

  13. Qiu X, Yakovlev A (2006) Some comments on instability of false discovery rate estimation. J Bioinform Comput Biol 4(5):1057–1068

    Article  PubMed  CAS  Google Scholar 

  14. Storey JD, Taylor JE, Siegmund D (2003) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Ser B 66:187–205

    Article  Google Scholar 

  15. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  16. Qiu X, Brooks AI, Klebanov L, Yakovlev A (2005) The effects of normalization on the correlation structure of microarray data. BMC Bioinform 6:120

    Article  Google Scholar 

  17. Klebanov L, Jordan C, Yakovlev A (2006) A new type of stochastic dependence revealed in gene expression data. Stat Appl Genet Mol Biol 5 (Article7)

    Google Scholar 

  18. Almudevar A, Klebanov LB, Qiu X, Salzman P, Yakovlev AY (2006) Utility of correlation measures in analysis of gene expression. NeuroRx 3(3):384–395

    Article  PubMed  CAS  Google Scholar 

  19. Klebanov L, Yakovlev A (2006) Treating expression levels of different genes as a sample in microarray data analysis: is it worth a risk? Stat Appl Genet Mol Biol 5, Article 9

    Google Scholar 

  20. Qiu X, Xiao Y, Gordon A, Yakovlev A (2006) Assessing stability of gene selection in microarray data analysis. BMC Bioinform 7:50

    Article  Google Scholar 

  21. Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25(1):60

    Google Scholar 

  22. Yeoh E-J, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui C-H, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143

    Article  PubMed  CAS  Google Scholar 

  23. Westfall PH, Young S (1993) Resampling-based multiple testing. Wiley, New York, NY

    Google Scholar 

  24. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cdna microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15

    Article  PubMed  Google Scholar 

  25. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  26. Gordon A, Glazko G, Qiu X, Yakovlev A (2007) Control of the mean number of false discoveries, Bonferroni, and stability of multiple testing. Ann Appl Stat 1(1):179–190

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by NIH Grant GM079259 (X. Qiu) and by Theodosius Dobzhansky Center for Genome Bioinformatics (L. Klebanov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qiu, X., Klebanov, L. (2013). Gene Selection with the δ-Sequence Method. In: Yakovlev, A., Klebanov, L., Gaile, D. (eds) Statistical Methods for Microarray Data Analysis. Methods in Molecular Biology, vol 972. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60327-337-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-337-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-60327-336-7

  • Online ISBN: 978-1-60327-337-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics