Skip to main content

Cell-Free Protein Synthesis Technology in NMR High-Throughput Structure Determination

  • Protocol
  • First Online:
Book cover Cell-Free Protein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 607))

Abstract

This chapter describes the current implementation of the cell-free translation platform developed at the Center for Eukaryotic Structural Genomics (CESG) and practical aspects of the production of stable isotope-labeled eukaryotic proteins for NMR structure determination. Protocols are reported for the use of wheat germ cell-free translation in small-scale screening for the level of total protein expression, the solubility of the expressed protein, and the success in purification as predictive indicators of the likelihood that a protein may be obtained in sufficient quantity and quality to initiate structural studies. In most circumstances, the small-scale reactions also produce sufficient protein to permit bioanalytical and functional characterizations. The protocols incorporate the use of robots specialized for small-scale cell-free translation, large-scale protein production, and automated purification of soluble, His6-tagged proteins. The integration of isotopically labeled proteins into the sequence of experiments required for NMR structure determination is outlined, and additional protocols for production of integral membrane proteins in the presence of either detergents or unilamellar liposomes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinarov, D. A., Lytle, B. L., Peterson, F. C., Tyler, E. M., Volkman, B. F., and Markley, J. L. (2004) Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nat Methods 1, 149–153.

    Article  CAS  PubMed  Google Scholar 

  2. Vinarov, D. A. and Markley, J. L. (2005) High-throughput automated platform for nuclear magnetic resonance-based structural proteomics. Expert Rev Proteomics 2, 49-55.

    Article  CAS  PubMed  Google Scholar 

  3. Vinarov, D. A., Loushin Newman, C. L., and Markley, J. L. (2006) Wheat germ cell-free platform for eukaryotic protein production. FEBS J. 273, 4160-4169.

    Article  CAS  PubMed  Google Scholar 

  4. Vinarov, D. A., Newman, C. L., Tyler, E. M., Markley, J. L., and Shahan, M. N. (2006) Wheat germ cell-free expression system for protein production. Curr. Protoc. Protein Sci. Chapter 5:Unit 5 18.

    Google Scholar 

  5. Markley, J. L., Aceti, D. J., Bingman, C. A., et al. (2009) The Center for Eukaryotic Structural Genomics. J. Struct. Funct. Genomics 10, 165-179.

    Article  CAS  PubMed  Google Scholar 

  6. Szyperski, T., Yeh, D. C., Sukumaran, D. K., Moseley, H. N., and Montelione, G. T. (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc. Natl. Acad. Sci. USA 99, 8009-8014.

    Article  CAS  PubMed  Google Scholar 

  7. Hiller, S., Fiorito, F., Wüthrich, K., and Wider, G. (2005) Automated projection spectroscopy (APSY). Proc. Natl. Acad. Sci. USA 102, 10876-10881.

    Article  CAS  PubMed  Google Scholar 

  8. Eghbalnia, H. R., Bahrami, A., Tonelli, M., Hallenga, K., and Markley, J. L. (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J. Am. Chem. Soc. 127, 12528-12536.

    Article  CAS  PubMed  Google Scholar 

  9. Bahrami, A., Assadi, A., Markley, J. L., and Eghbalnia, H. (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comp. Biol. 5, e1000307. doi:10.1371/journal.pcbi.1000307.

    Article  Google Scholar 

  10. Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171-189.

    Article  CAS  PubMed  Google Scholar 

  11. Güntert, P. (2004) Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353-378.

    PubMed  Google Scholar 

  12. Bhattacharya, A., Tejero, R., and Montelione, G. T. (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778-795.

    Article  CAS  PubMed  Google Scholar 

  13. Kainosho, M., Torizawa, T., Iwashita, Y., Terauchi, T., Mei Ono, A., and Güntert, P. (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440, 52-57.

    Article  CAS  PubMed  Google Scholar 

  14. Takeda, M., Sugimori, N., Torizawa, T., et al. (2008) Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS J. 275, 5873-5884.

    Article  CAS  PubMed  Google Scholar 

  15. Blommel, P. G., Martin, P. A., Wrobel, R. L., Steffen, E., and Fox, B. G. (2006) High efficiency single step production of expression plasmids from cDNA clones using the Flexi Vector cloning system. Protein Expr. Purif. 47, 562-570.

    Article  CAS  PubMed  Google Scholar 

  16. Sawasaki, T., Hasegawa, Y., Tsuchimochi, M., et al. (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514, 102-105.

    Article  CAS  PubMed  Google Scholar 

  17. Frederick, R. O., Bergeman, L., Blommel, P. G., et al. (2007) Small-scale, semi-automated purification of eukaryotic proteins for structure determination. J. Struct. Funct. Genomics 8, 153-166.

    Article  CAS  PubMed  Google Scholar 

  18. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein Backbone Angle Restraints From Searching a Database for Chemical Shift and Sequence Homology. J. Biomol. NMR 13, 289-302.

    Article  CAS  PubMed  Google Scholar 

  19. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65-73.

    Article  CAS  PubMed  Google Scholar 

  20. Ulrich, E. L., Akutsu, H., Doreleijers. J. F., et al. (2008) BioMagResBank. Nucleic Acids Res. 36(Database issue), D402-D408.

    Google Scholar 

  21. Markley, J. L., Ulrich, E. L., Berman, H. M., Henrick, K., Nakamura, H., and Akutsu, H. (2008) BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions. J. Biomol. NMR 40, 153-155.

    Article  CAS  PubMed  Google Scholar 

  22. Nozawa, A., Nanamiya, H., Miyata, T., et al. (2007) A cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters. Plant Cell Physiol. 48, 1815-1820.

    Article  CAS  PubMed  Google Scholar 

  23. Klammt, C., Schwarz, D., Dötsch, V., and Bernhard, F. (2007) Cell-free production of integral membrane proteins on a preparative scale. Methods Mol. Biol. 375, 57-78.

    Article  CAS  PubMed  Google Scholar 

  24. Wuu, J. J. and Swartz, J. R. (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta 1778, 1237-1250.

    Article  CAS  PubMed  Google Scholar 

  25. Goren, M. A. and Fox, B. G. (2008) Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex. Protein Expr. Purif. 62, 171-178.

    Article  CAS  PubMed  Google Scholar 

  26. Blommel, P. G. and Fox, B. G. (2007) A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 55, 53-68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIGMS Protein Structure Initiative grant 1U54 GM074901 (which supports CESG) and NIGMS grant P41 RR02301 (which supports the National Magnetic Resonance Facility at Madison, where NMR spectroscopy was carried out). Dr. Dmitriy A. Vinarov led initial work at CESG on the development of the wheat germ cell-free system for structural genomics efforts with assistance from Ms. Ejan Tyler and Dr. Carrie Loushin Newman. The authors thank Prof. Yaeta Endo and others at Ehime University for advice and encouragement and also the staff members of CellFree Sciences Ltd. (Yokohama, Japan) who made this approach commercially viable.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Makino, Si., Goren, M.A., Fox, B.G., Markley, J.L. (2010). Cell-Free Protein Synthesis Technology in NMR High-Throughput Structure Determination. In: Endo, Y., Takai, K., Ueda, T. (eds) Cell-Free Protein Production. Methods in Molecular Biology, vol 607. Humana Press. https://doi.org/10.1007/978-1-60327-331-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-331-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-330-5

  • Online ISBN: 978-1-60327-331-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics