Skip to main content

Physiological Studies of the Interaction Between Opsin and Chromophore in Rod and Cone Visual Pigments

  • Protocol
  • First Online:
Retinoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 652))

Abstract

The visual pigment in vertebrate photoreceptors is a G protein-coupled receptor that consists of a protein, opsin, covalently attached to a chromophore, 11-cis-retinal. Activation of the visual pigment by light triggers a transduction cascade that produces experimentally measurable electrical responses in photoreceptors. The interactions between opsin and chromophore can be investigated with electrophysiologial recordings in intact amphibian and mouse rod and cone photoreceptor cells. Here we describe methods for substituting the native chromophore with various chromophore analogs to investigate how specific parts of the chromophore affect the signaling properties of the visual pigment and the function of photoreceptors. We also describe methods for genetically substituting the native rod opsin gene with cone opsins or with mutant rod opsins to investigate and compare their signaling properties. These methods are useful not only for understanding the relation between the properties of visual pigments and the function of photoreceptors but also for understanding the mechanisms by which mutations in rod opsin produce night blindness and other visual disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebrey, T., Koutalos, Y. (2001) Vertebrate photoreceptors. Prog. Retin. Eye Res. 20, 49–94.

    Article  PubMed  CAS  Google Scholar 

  2. Saari, J.C. (2000) Biochemistry of visual pigment regeneration: The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 41, 337–348.

    PubMed  CAS  Google Scholar 

  3. Cornwall, M.C., Fain, G.L. (1994) Bleached pigment activates transduction in isolated rods of the salamander retina. J. Physiol. 480(Pt 2), 261–279.

    PubMed  CAS  Google Scholar 

  4. Cornwall, M.C., Matthews, H.R., Crouch, R.K., Fain, G.L. (1995) Bleached pigment activates transduction in salamander cones. J. Gen. Physiol. 106, 543–557.

    Article  PubMed  CAS  Google Scholar 

  5. Yokoyama, S. (2000) Molecular evolution of vertebrate visual pigments. Prog. Retin. Eye Res. 19, 385–419.

    Article  PubMed  CAS  Google Scholar 

  6. Cornwall, M.C., Jones, G.J., Kefalov, V.J., Fain, G.L., Matthews, H.R. (2000) Electrophysiological methods for measurement of activation of phototransduction by bleached visual pigment in salamander photoreceptors. Methods Enzymol. 316, 224–252.

    Article  PubMed  CAS  Google Scholar 

  7. Crouch, R.K., Kefalov, V., Gartner, W., Cornwall, M.C. (2002) Use of retinal analogues for the study of visual pigment function. Methods Enzymol. 343, 29–48.

    Article  PubMed  Google Scholar 

  8. Xiong, W.H., Yau, K.W. (2002) Rod sensitivity during Xenopus development. J. Gen. Physiol. 120, 817–827.

    Article  PubMed  CAS  Google Scholar 

  9. Lem, J., Makino, C.L. (1996) Phototransduction in transgenic mice. Curr. Opin. Neurobiol. 6, 453–458.

    Article  PubMed  CAS  Google Scholar 

  10. Fan, J., Woodruff, M.L., Cilluffo, M.C., Crouch, R.K., Fain, G.L. (2005) Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J. Physiol. 568, 83–95.

    Article  PubMed  CAS  Google Scholar 

  11. Luo, D.G., Yau, K.W. (2005) Rod sensitivity of neonatal mouse and rat. J. Gen. Physiol. 126, 263–269.

    Article  PubMed  CAS  Google Scholar 

  12. Dizhoor, A.M., Woodruff, M.L., Olshevskaya, E.V., Cilluffo, M.C., Cornwall, M.C., Sieving, P.A., Fain, G.L. (2008) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J. Neurosci. 28, 11662–11672.

    Article  PubMed  CAS  Google Scholar 

  13. Nikonov, S.S., Kholodenko, R., Lem, J., Pugh, E.N., Jr. (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol. 127, 359–374.

    Article  PubMed  Google Scholar 

  14. Heikkinen, H., Nymark, S., Koskelainen, A. (2008) Mouse cone photoresponses obtained with electroretinogram from the isolated retina. Vision Res. 48, 264–272.

    Article  PubMed  CAS  Google Scholar 

  15. Matsumoto, H., Yoshizawa, T. (1975) Existence of a beta-ionone ring-binding site in the rhodopsin molecule. Nature 258, 523–526.

    Article  PubMed  CAS  Google Scholar 

  16. Bownds, D. (1967) Site of attachment of retinal in rhodopsin. Nature 216, 1178–1181.

    Article  PubMed  CAS  Google Scholar 

  17. Lyubarsky, A.L., Pugh, E.N., Jr. (2007) Over 98% of 11-cis retinal in the dark-adapted mouse eye is bound to rod and cone opsins. Invest. Ophthalmol. Vis. Sci. 48, 3246.

    Article  Google Scholar 

  18. Kefalov, V.J., Estevez, M.E., Kono, M., Goletz, P.W., Crouch, R.K., Cornwall, M.C., Yau, K.W. (2005) Breaking the covalent bond – a pigment property that contributes to desensitization in cones. Neuron 46, 879–890.

    Article  PubMed  CAS  Google Scholar 

  19. Crouch, R.K. (1986) Studies of rhodopsin and bacteriorhodopsin using modified retinals. Photochem. Photobiol. 44, 803–807.

    Article  PubMed  CAS  Google Scholar 

  20. Kefalov, V.J., Carter Cornwall, M., Crouch, R.K. (1999) Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. J. Gen. Physiol. 113, 491–503.

    Article  PubMed  CAS  Google Scholar 

  21. Corson, D.W., Kefalov, V.J., Cornwall, M.C., Crouch, R.K. (2000) Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors. J. Gen. Physiol. 116, 283–297.

    Article  PubMed  CAS  Google Scholar 

  22. Isayama, T., Chen, Y., Kono, M., Degrip, W.J., Ma, J.X., Crouch, R.K., Makino, C.L. (2006) Differences in the pharmacological activation of visual opsins. Vis. Neurosci. 23, 899–908.

    Article  PubMed  CAS  Google Scholar 

  23. Jin, J., Crouch, R.K., Corson, D.W., Katz, B.M., MacNichol, E.F., Cornwall, M.C. (1993) Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron 11, 513–522.

    Article  PubMed  CAS  Google Scholar 

  24. Kefalov, V.J., Crouch, R.K., Cornwall, M.C. (2001) Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749–755.

    Article  PubMed  CAS  Google Scholar 

  25. Das, J., Crouch, R.K., Ma, J.X., Oprian, D.D., Kono, M. (2004) Role of the 9-methyl group of retinal in cone visual pigments. Biochemistry 43, 5532–5538.

    Article  PubMed  CAS  Google Scholar 

  26. Ganter, U.M., Schmid, E.D., Perez-Sala, D., Rando, R.R., Siebert, F. (1989) Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry 28, 5954–5962.

    Article  PubMed  CAS  Google Scholar 

  27. Corson, D.W., Cornwall, M.C., MacNichol, E.F., Tsang, S., Derguini, F., Crouch, R.K., Nakanishi, K. (1994) Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. Proc. Natl. Acad. Sci. USA 91, 6958–6962.

    Article  PubMed  CAS  Google Scholar 

  28. Estevez, M.E., Ala-Laurila, P., Crouch, R.K., Cornwall, M.C. (2006) Turning cones off: The role of the 9-methyl group of retinal in red cones. J. Gen. Physiol. 128, 671–685.

    Article  PubMed  CAS  Google Scholar 

  29. Harosi, F.I. (1975) Absorption spectra and linear dichroism of some amphibian photoreceptors. J. Gen. Physiol. 66, 357–382.

    Article  PubMed  CAS  Google Scholar 

  30. Makino, C.L., Dodd, R.L. (1996) Multiple visual pigments in a photoreceptor of the salamander retina. J. Gen. Physiol. 108, 27–34.

    Article  PubMed  CAS  Google Scholar 

  31. Ala-Laurila, P., Donner, K., Crouch, R.K., Cornwall, M.C. (2007) Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods. J. Physiol. 585, 57–74.

    Article  PubMed  CAS  Google Scholar 

  32. Fu, Y., Kefalov, V., Luo, D.G., Xue, T., Yau, K.W. (2008) Quantal noise from human red cone pigment. Nat. Neurosci. 11, 565–571.

    Article  PubMed  CAS  Google Scholar 

  33. Crescitelli, F. (1984) The gecko visual pigment: The dark exchange of chromophore. Vision Res. 24, 1551–1553.

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto, H., Tokunaga, F., Yoshizawa, T. (1975) Accessibility of the iodopsin chromophore. Biochim. Biophys. Acta 404, 300–308.

    Article  PubMed  CAS  Google Scholar 

  35. Kefalov, V., Fu, Y., Marsh-Armstrong, N., Yau, K.W. (2003) Role of visual pigment properties in rod and cone phototransduction. Nature 425, 526–531.

    Article  PubMed  CAS  Google Scholar 

  36. Rieke, F., Baylor, D.A. (2000) Origin and functional impact of dark noise in retinal cones. Neuron 26, 181–186.

    Article  PubMed  CAS  Google Scholar 

  37. Redmond, T.M., Yu, S., Lee, E., Bok, D., Hamasaki, D., Chen, N., Goletz, P., Ma, J.X., Crouch, R.K., Pfeifer, K. (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20, 344–351.

    Article  PubMed  CAS  Google Scholar 

  38. Jin, M., Li, S., Moghrabi, W.N., Sun, H., Travis, G.H. (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449–459.

    Article  PubMed  CAS  Google Scholar 

  39. Woodruff, M.L., Wang, Z., Chung, H.Y., Redmond, T.M., Fain, G.L., Lem, J. (2003) Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat. Genet. 35, 158–164.

    Article  PubMed  CAS  Google Scholar 

  40. Fain, G.L., Dowling, J.E. (1973) Intracellular recordings from single rods and cones in the mudpuppy retina. Science 180, 1178–1181.

    Article  PubMed  CAS  Google Scholar 

  41. Schnapf, J.L., Baylor, D.A. (1987) How photoreceptor cells respond to light. Sci. Am. 256, 40–47.

    Article  PubMed  CAS  Google Scholar 

  42. Imai, H., Imamoto, Y., Yoshizawa, T., Shichida, Y. (1995) Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Biochemistry 34, 10525–10531.

    Article  PubMed  CAS  Google Scholar 

  43. Okada, T., Matsuda, T., Kandori, H., Fukada, Y., Yoshizawa, T., Shichida, Y. (1994) Circular dichroism of metaiodopsin II and its binding to transducin: A comparative study between meta II intermediates of iodopsin and rhodopsin. Biochemistry 33, 4940–4946.

    Article  PubMed  CAS  Google Scholar 

  44. Starace, D.M., Knox, B.E. (1997) Activation of transducin by a Xenopus short wavelength visual pigment. J. Biol. Chem. 272, 1095–1100.

    Article  PubMed  CAS  Google Scholar 

  45. Imai, H., Kefalov, V., Sakurai, K., Chisaka, O., Ueda, Y., Onishi, A., Morizumi, T., Fu, Y., Ichikawa, K., Nakatani, K., Honda, Y., Chen, J., Yau, K. W., Shichida, Y. (2007) Molecular properties of rhodopsin and rod function. J. Biol. Chem. 282, 6677–6684.

    Article  PubMed  CAS  Google Scholar 

  46. Sakurai, K., Onishi, A., Imai, H., Chisaka, O., Ueda, Y., Usukura, J., Nakatani, K., Shichida, Y. (2007) Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. J. Gen. Physiol. 130, 21–40.

    Article  PubMed  Google Scholar 

  47. Shi, G., Yau, K.W., Chen, J., Kefalov, V.J. (2007) Signaling properties of a short-wave cone visual pigment and its role in phototransduction. J. Neurosci. 27, 10084–10093.

    Article  PubMed  CAS  Google Scholar 

  48. Sampath, A.P., Baylor, D.A. (2002) Molecular mechanism of spontaneous pigment activation in retinal cones. Biophys. J. 83, 184–193.

    Article  PubMed  CAS  Google Scholar 

  49. Makino, C.L., Wen, X.H., Lem, J. (2003) Piecing together the timetable for visual transduction with transgenic animals. Curr. Opin. Neurobiol. 13, 404–412.

    Article  PubMed  CAS  Google Scholar 

  50. Xu, J., Dodd, R.L., Makino, C.L., Simon, M.I., Baylor, D.A., Chen, J. (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389, 505–509.

    Article  PubMed  CAS  Google Scholar 

  51. Sieving, P.A., Richards, J.E., Naarendorp, F., Bingham, E.L., Scott, K., Alpern, M. (1995) Dark-light: Model for nightblindness from the human rhodopsin Gly-90–>Asp mutation. Proc. Natl. Acad. Sci. USA 92, 880–884.

    Article  PubMed  CAS  Google Scholar 

  52. Sieving, P.A., Fowler, M.L., Bush, R.A., Machida, S., Calvert, P.D., Green, D.G., Makino, C.L., McHenry, C.L. (2001) Constitutive “light” adaptation in rods from G90D rhodopsin: A mechanism for human congenital nightblindness without rod cell loss. J. Neurosci. 21, 5449–5460.

    PubMed  CAS  Google Scholar 

  53. Rao, V.R., Cohen, G.B., Oprian, D.D. (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367, 639–642.

    Article  PubMed  CAS  Google Scholar 

  54. Rao, V.R., Oprian, D.D. (1996) Activating mutations of rhodopsin and other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 25, 287–314.

    Article  PubMed  CAS  Google Scholar 

  55. Jin, S., Cornwall, M.C., Oprian, D.D. (2003) Opsin activation as a cause of congenital night blindness. Nat. Neurosci. 6, 731–735.

    Article  PubMed  CAS  Google Scholar 

  56. Yau, K.W., Lamb, T.D., Baylor, D.A. (1977) Light-induced fluctuations in membrane current of single toad rod outer segments. Nature 269, 78–80.

    Article  PubMed  CAS  Google Scholar 

  57. Cornwall, M.C., Fein, A., MacNichol, E.F., Jr. (1990) Cellular mechanisms that underlie bleaching and background adaptation. J. Gen. Physiol. 96, 345–372.

    Article  PubMed  CAS  Google Scholar 

  58. Jones, G.J. (1995) Light adaptation and the rising phase of the flash photocurrent of salamander retinal rods. J. Physiol. 487(Pt 2), 441–451.

    PubMed  CAS  Google Scholar 

  59. Jones, G.J., Fein, A., MacNichol, E.F., Jr., Cornwall, M.C. (1993) Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation. J. Gen. Physiol. 102, 483–502.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kefalov, V.J., Cornwall, M.C., Fain, G.L. (2010). Physiological Studies of the Interaction Between Opsin and Chromophore in Rod and Cone Visual Pigments. In: Sun, H., Travis, G. (eds) Retinoids. Methods in Molecular Biology, vol 652. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-325-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-325-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-324-4

  • Online ISBN: 978-1-60327-325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics