Skip to main content
Book cover

Retinoids pp 277–294Cite as

Detection of Retinoic Acid Catabolism with Reporter Systems and by In Situ Hybridization for CYP26 Enzymes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 652))

Abstract

Retinoic acid (RA), an active form of vitamin A, is essential for life in vertebrates, owing to its capacity of influencing expression of a sizable fraction of all genes and proteins. It functions via two modes: (1) as controlling ligand for specific transcription factors in the nucleus it stimulates or inhibits gene expression from RA response elements in gene promoters; (2) in non-genomic pathways it activates kinase-signaling cascades that converge with additional influences to regulate gene expression and mRNA translation. RA performs a critical role in morphogenesis of the developing embryo, which is reflected in spatio-temporally changing expression patterns of RA-synthesizing and RA-degrading enzymes and in its biophysical characteristics as a small diffusible lipid. Because its histological localization cannot be directly visualized for technical reasons, its sites of action in vivo are inferred from the locations of the metabolic enzymes and through use of two kinds of RA reporter systems. Here we explain techniques for use of RA reporter cells and RA reporter mice, and we describe in situ hybridization methods for the three major RA-degrading enzymes: CYP26A1, CYP26B1, and CYP26C1. Comparisons of the different indicators for sites of RA signaling demonstrate that local RA peaks and troughs are important for inferring some but not all locations of RA actions. When integrated within cells of living mice, expression of the RA reporter construct is rarely a simple measure of local RA levels, especially in the developing brain, but it appears to provide cues to an RA involvement in site-specific regulatory networks in combination with other spatial determinants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ross, S.A., McCaffery, P., Dräger, U.C., De Luca, L.M. (2000) Retinoids in embryonal development. Physiol. Rev. 80, 1021–1054.

    PubMed  CAS  Google Scholar 

  2. Niederreither, K., Dollé, P. (2008) Retinoic acid in development: Towards an integrated view. Nat. Rev. Genet. 9, 541–553.

    Article  PubMed  CAS  Google Scholar 

  3. Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., Gingeras, T.R. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509.

    Article  PubMed  CAS  Google Scholar 

  4. Tickle, C., Alberts, B., Wolpert, L., Lee, J. (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296, 564–566.

    Article  PubMed  CAS  Google Scholar 

  5. White, R.J., Schilling, T.F. (2008) How degrading: Cyp26s in hindbrain development. Dev. Dyn. 237, 2775–2790.

    Article  PubMed  CAS  Google Scholar 

  6. White, J.A., Guo, Y.D., Baetz, K., Beckett-Jones, B., Bonasoro, J., Hsu, K.E., Dilworth, F.J., Jones, G., Petkovich, M. (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J. Biol. Chem. 271, 29922–29927.

    Article  PubMed  CAS  Google Scholar 

  7. Fujii, H., Sato, T., Kaneko, S., Gotoh, O., Fujii-Kuriyama, Y., Osawa, K., Kato, S., Hamada, H. (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryo. EMBO J. 16, 4163–4173.

    Article  PubMed  CAS  Google Scholar 

  8. Ray, W.J., Bain, G., Yao, M., Gottlieb, D.I. (1997) CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J. Biol. Chem. 272, 18702–18708.

    Article  PubMed  CAS  Google Scholar 

  9. MacLean, G., Abu-Abed, S., Dolle, P., Tahayato, A., Chambon, P., Petkovich, M. (2001) Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development. Mech. Dev. 107, 195–201.

    Article  PubMed  CAS  Google Scholar 

  10. Tahayato, A., Dolle, P., Petkovich, M. (2003) Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Express. Patterns 3, 449–454.

    Article  CAS  Google Scholar 

  11. Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., Rossant, J., Hamada, H. (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213–225.

    Article  PubMed  CAS  Google Scholar 

  12. Abu-Abed, S., Dolle, P., Metzger, D., Beckett, B., Chambon, P., Petkovich, M. (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev. 15, 226–240.

    Article  PubMed  CAS  Google Scholar 

  13. Yashiro, K., Zhao, X., Uehara, M., Yamashita, K., Nishijima, M., Nishino, J., Saijoh, Y., Sakai, Y., Hamada, H. (2004) Regulation of retinoic acid distribution is required for proximo-distal patterning and outgrowth of the developing mouse limb. Dev. Cell 6, 411–422.

    Article  PubMed  CAS  Google Scholar 

  14. Uehara, M., Yashiro, K., Mamiya, S., Nishino, J., Chambon, P., Dolle, P., Sakai, Y. (2007) CYP26A1 and CYP26C1 cooperatively regulate anterior-posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Dev. Biol. 302, 399–411.

    Article  PubMed  CAS  Google Scholar 

  15. Lutz, J.D., Dixit, V., Yeung, C.K., Dickmann, L.J., Zelter, A., Thatcher, J.E., Nelson, W.L., Isoherranen, N. (2009) Expression and functional characterization of cytochrome P450 26A1, a retinoic acid hydroxylase. Biochem. Pharmacol. 15, 258–268.

    Article  Google Scholar 

  16. Niederreither, K., Abu-Abed, S., Schuhbaur, B., Petkovich, M., Chambon, P., Dolle, P. (2002) Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat. Genet. 31, 84–88.

    PubMed  CAS  Google Scholar 

  17. McCaffery, P., Lee, M.-O., Wagner, M.A., Sladek, N.E., Dräger, U.C. (1992) Asymmetrical retinoic acid synthesis in the dorso-ventral axis of the retina. Development 115, 371–382.

    PubMed  CAS  Google Scholar 

  18. Rossant, J., Zirngibl, R., Cado, D., Shago, M., Giguère, V. (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–1344.

    Article  PubMed  CAS  Google Scholar 

  19. Wagner, M., Han, B., Jessell, T.M. (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116, 55–66.

    PubMed  CAS  Google Scholar 

  20. Yamamoto, M., Dräger, U.C., McCaffery, P. (1998) A novel assay for retinoic acid catabolic enzymes shows high expression in the developing hindbrain. Dev. Brain Res. 107, 103–111.

    Article  CAS  Google Scholar 

  21. McCaffery, P., Wagner, E., O'Neil, J., Petkovich, M., Dräger, U.C. (1999) Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression. Mech. Dev. 82, 119–30. Corrections 85, 203–214.

    Article  PubMed  CAS  Google Scholar 

  22. McCaffery, P., Dräger, U.C. (1997) A sensitive bioassay for enzymes that synthesize retinoic acid. Brain Res. Protocols 1, 232–236.

    Article  CAS  Google Scholar 

  23. McCaffery, P., Dräger, U.C. (1995) Retinoic acid synthesizing enzymes in the embryonic and adult vertebrate. Adv. Exp. Med. Biol. 372, 173–183.

    PubMed  CAS  Google Scholar 

  24. Henrique, D., Adam, J., Myat, A., Chitnis, A., Lewis, J., Ish-Horowicz, D. (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790.

    Article  PubMed  CAS  Google Scholar 

  25. Sakai, Y., Luo, T., McCaffery, P., Hamada, H., Dräger, U.C. (2004) CYP26A1 and CYP26C1 cooperate in degrading retinoic acid within the equatorial retina during later eye development. Dev. Biol. 276, 143–157.

    Article  PubMed  CAS  Google Scholar 

  26. Luo, T., Sakai, Y., Wagner, E., Dräger, U.C. (2006) Retinoids, eye development and maturation of visual function. J. Neurobiol. 66, 677–686.

    Article  PubMed  CAS  Google Scholar 

  27. Luo, T., Wagner, E., Grün, F., Dräger, U.C. (2004) Retinoic acid signaling in the brain marks formation of optic projections, maturation of the dorsal telencephalon, and function of limbic sites. J. Comp. Neurol. 470, 297–316.

    Article  PubMed  CAS  Google Scholar 

  28. Kurlandsky, S.B., Gamble, M.V., Ramakrishnan, R., Blaner, W.S. (1995) Plasma delivery of retinoic acid to tissues in the rat. J. Biol. Chem. 270, 17850–17857.

    Article  PubMed  CAS  Google Scholar 

  29. Dräger, U.C. (2006) Retinoic acid signaling in the functioning brain. Science STKE 324, pe10.

    Google Scholar 

  30. Lane, M.A., Bailey, S.J. (2005) Role of retinoid signalling in the adult brain. Prog. Neurobiol. 75, 275–293.

    Article  PubMed  CAS  Google Scholar 

  31. Luo, T., Wagner, E., Crandall, J.E., Dräger, U.C. (2004) A retinoic-acid critical period in the early postnatal mouse brain. Biol. Psychiat. 56, 971–980.

    Article  PubMed  CAS  Google Scholar 

  32. Liao, W.L., Wang, H.F., Tsai, H.C., Chambon, P., Wagner, M., Kakizuka, A., Liu, F.C. (2005) Retinoid signaling competence and RARbeta-mediated gene regulation in the developing mammalian telencephalon. Dev. Dyn. 232, 887–900.

    Article  PubMed  CAS  Google Scholar 

  33. Molotkova, N., Molotkov, A., Duester, G. (2007) Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev. Biol. 303, 601–610.

    Article  PubMed  CAS  Google Scholar 

  34. Aggarwal, S., Kim, S.W., Cheon, K., Tabassam, F.H., Yoon, J.H., Koo, J.S. (2006) Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol. Biol. Cell 17, 566–575.

    Article  PubMed  CAS  Google Scholar 

  35. Alique, M., Lucio-Cazana, F.J., Moreno, V., Xu, Q., Konta, T., Nakayama, K., Furusu, A., Sepulveda, J.C., Kitamura, M. (2007) Upregulation of cyclooxygenases by retinoic acid in rat mesangial cells. Pharmacology 79, 57–64.

    Article  PubMed  CAS  Google Scholar 

  36. Canon, E., Cosgaya, J.M., Scsucova, S., Aranda, A. (2004) Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol. Biol. Cell. 15, 5583–5592.

    Article  PubMed  CAS  Google Scholar 

  37. Dey, N., De, P.K., Wang, M., Zhang, H., Dobrota, E.A., Robertson, K.A., Durden, D.L. (2007) CSK controls retinoic acid receptor (RAR) signaling: A RAR-c-SRC signaling axis is required for neuritogenic differentiation. Mol. Cell. Biol. 27, 4179–4197.

    Article  PubMed  CAS  Google Scholar 

  38. Fernandes, N.D., Sun, Y., Price, B.D. (2007) Activation of ATM's kinase activity by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells. J. Biol. Chem. 282, 16577–16584.

    Article  PubMed  CAS  Google Scholar 

  39. Hughes, P.J., Zhao, Y., Chandraratna, R.A., Brown, G. (2006) Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARalpha and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. J. Cell. Biochem. 97, 327–350.

    Article  PubMed  CAS  Google Scholar 

  40. Kim, S.W., Hong, J.S., Ryu, S.H., Chung, W.C., Yoon, J.H., Koo, J.S. (2007) Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol. Cell Biol. 27, 6933–6947.

    Article  PubMed  CAS  Google Scholar 

  41. Lal, L., Li, Y., Smith, J., Sassano, A., Uddin, S., Parmar, S., Tallman, M.S., Minucci, S., Hay, N., Platanias, L.C. (2005) Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 105, 1669–1677.

    Article  PubMed  CAS  Google Scholar 

  42. Lee, J.H., Kim, K.T. (2004) Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J. Neurochem. 91, 634–647.

    Article  PubMed  CAS  Google Scholar 

  43. Liao, Y.P., Ho, S.Y., Liou, J.C. (2004) Non-genomic regulation of transmitter release by retinoic acid at developing motoneurons in Xenopus cell culture. J. Cell Sci. 117, 2917–2924.

    Article  PubMed  CAS  Google Scholar 

  44. Liou, J.C., Ho, S.Y., Shen, M.R., Liao, Y.P., Chiu, W.T., Kang, K.H. (2005) A rapid, nongenomic pathway facilitates the synaptic transmission induced by retinoic acid at the developing synapse. J. Cell Sci. 118, 4721–4730.

    Article  PubMed  CAS  Google Scholar 

  45. Lopez-Andreo, M.J., Torrecillas, A., Conesa-Zamora, P., Corbalan-Garcia, S., Gomez-Fernandez, J.C. (2005) Retinoic acid as a modulator of the activity of protein kinase Calpha. Biochemistry 44, 11353–11360.

    Article  PubMed  CAS  Google Scholar 

  46. Masia, S., Alvarez, S., de Lera, A.R., Barettino, D. (2007) Rapid, non-genomic actions of retinoic acid on phosphatidyl-Inositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol. Endocrinol. 21, 2391–2402.

    Article  PubMed  CAS  Google Scholar 

  47. Ochoa, W.F., Torrecillas, A., Fita, I., Verdaguer, N., Corbalan-Garcia, S., Gomez-Fernandez, J.C. (2003) Retinoic acid binds to the C2-domain of protein kinase C(alpha). Biochemistry 42, 8774–8779.

    Article  PubMed  CAS  Google Scholar 

  48. Poon, M.M., Chen, L. (2008) Retinoic acid-gated sequence-specific translational control by RARalpha. Proc. Natl. Acad. Sci. USA 105, 20303–20308.

    Article  PubMed  CAS  Google Scholar 

  49. Rosenfeld, M.G., Lunyak, V., Glass, C.K. (2006) Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428.

    Article  PubMed  CAS  Google Scholar 

  50. Kruyt, F.A., Folkers, G., van den Brink, C.E., van der Saag, P.T. (1992) A cyclic AMP response element is involved in retinoic acid-dependent RAR beta 2 promoter activation. Nucleic Acids Res. 20, 6393–6399.

    Article  PubMed  CAS  Google Scholar 

  51. Dräger, U.C., Luo, T., Wagner, E. (2008) Retinoic acid function in central visual pathways. In: Chalupa, L.M., Williams, R. (eds.), Eye, Retina and the Visual Systems of the Mouse, MIT Press, Cambridge, MA, pp. 363–376.

    Google Scholar 

  52. Luo, T., Wagner, E., Dräger, U.C. (2009) Integrating retinoic acid signaling with brain function. Dev. Psychol. 45, 139–150.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sakai, Y., Dräger, U.C. (2010). Detection of Retinoic Acid Catabolism with Reporter Systems and by In Situ Hybridization for CYP26 Enzymes. In: Sun, H., Travis, G. (eds) Retinoids. Methods in Molecular Biology, vol 652. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-325-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-325-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-324-4

  • Online ISBN: 978-1-60327-325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics