Skip to main content

Visualization of Retinoid Storage and Trafficking by Two-Photon Microscopy

  • Protocol
  • First Online:
Retinoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 652))

Abstract

Vertebrate vision is maintained by the retinoid (visual) cycle, a complex enzymatic pathway that operates in the retina to regenerate the visual chromophore, 11-cis-retinal, a prosthetic group of rhodopsin that undergoes activation by light. Many different mutations in genes encoding retinoid cycle proteins can cause a variety of human blinding diseases. Two-photon microscopy is an evolving, non-invasive, and repetitive imaging technology that can be used to monitor biomolecules within the vertebrate retina at a subcellular resolution. This method has the great advantage of portraying endogenous retinoid fluorophores in their native state without the need for artificial staining. Such real-time retinal imaging permits rapid evaluation not only of various stages of retinal disease in live animal models of human retinopathies but also of the outcome from intended pharmacological therapies. Two-photon microscopy offers substantial potential for early detection of age- and disease-related changes in the eye, long before clinical or pathological manifestations become apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HPLC:

high pressure liquid chromatography

NA:

numerical aperture

REST:

retinyl ester storage structure (retinosome)

RPE:

retinal pigmented epithelium

TPM:

two-photon microscopy

UV:

ultraviolet light.

References

  1. Palczewski, K. (2006) G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743–767.

    Article  PubMed  CAS  Google Scholar 

  2. McBee, J.K., Palczewski, K., Baehr, W., Pepperberg, D.R. (2001) Confronting complexity: The interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog. Retin. Eye Res. 20, 469–529.

    Article  PubMed  CAS  Google Scholar 

  3. Lamb, T.D., Pugh, E.N., Jr. (2004) Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307–380.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson, D.A., Gal, A. (2003) Vitamin A metabolism in the retinal pigment epithelium: Genes, mutations, and diseases. Prog. Retin. Eye Res. 22, 683–703.

    Article  PubMed  CAS  Google Scholar 

  5. Travis, G.H., Golczak, M., Moise, A.R., Palczewski, K. (2007) Diseases caused by defects in the visual cycle: Retinoids as potential therapeutic agents. Annu. Rev. Pharmacol. Toxicol. 47, 469–512.

    Article  PubMed  CAS  Google Scholar 

  6. Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B.X., Ma, J.X. (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci. USA 102, 12413–12418.

    Article  PubMed  CAS  Google Scholar 

  7. Jin, M., Li, S., Moghrabi, W.N., Sun, H., Travis, G.H. (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449–459.

    Article  PubMed  CAS  Google Scholar 

  8. Redmond, T.M., Poliakov, E., Yu, S., Tsai, J.Y., Lu, Z., Gentleman, S. (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc. Natl. Acad. Sci. USA 102, 13658–13663.

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto, H., Simon, A., Eriksson, U., Harris, E., Berson, E.L., Dryja, T.P. (1999) Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat. Genet. 22, 188–191.

    Article  PubMed  CAS  Google Scholar 

  10. Driessen, C.A., Winkens, H.J., Hoffmann, K., Kuhlmann, L.D., Janssen, B.P., Van Vugt, A.H., Van Hooser, J.P., Wieringa, B.E., Deutman, A.F., Palczewski, K., Ruether, K., Janssen, J.J. (2000) Disruption of the 11-cis-retinol dehydrogenase gene leads to accumulation of cis-retinols and cis-retinyl esters. Mol. Cell. Biol. 20, 4275–4287.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, T.S., Maeda, A., Maeda, T., Heinlein, C., Kedishvili, N., Palczewski, K., Nelson, P.S. (2005) Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: A role of RDH11 in visual processes in vivo. J. Biol. Chem. 280, 8694–8704.

    Article  PubMed  CAS  Google Scholar 

  12. Saari, J.C., Garwin, G.G., Haeseleer, F., Jang, G.F., Palczewski, K. (2000) Phase partition and high-performance liquid chromatography assays of retinoid dehydrogenases. Methods Enzymol. 316, 359–371.

    Article  PubMed  CAS  Google Scholar 

  13. Denk, W., Strickler, J.H., Webb, W.W. (1990) Two-photon laser scanning fluorescence microscopy. Science 248, 73–76.

    Article  PubMed  CAS  Google Scholar 

  14. Denk, W., Svoboda, K. (1997) Photon upmanship: Why multiphoton imaging is more than a gimmick. Neuron 18, 351–357.

    Article  PubMed  CAS  Google Scholar 

  15. Svoboda, K., Yasuda, R. (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839.

    Article  PubMed  CAS  Google Scholar 

  16. Imanishi, Y., Lodowski, K.H., Koutalos, Y. (2007) Two-photon microscopy: Shedding light on the chemistry of vision. Biochemistry 46, 9674–9684.

    Article  PubMed  CAS  Google Scholar 

  17. Williams, R.M., Piston, D.W., Webb, W.W. (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 8, 804–813.

    PubMed  CAS  Google Scholar 

  18. Diaspro, A. (ed.). (2002) Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, Wiley-Liss, New York, NY.

    Google Scholar 

  19. Imanishi, Y., Batten, M.L., Piston, D.W., Baehr, W., Palczewski, K. (2004) Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell. Biol. 164, 373–383.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang, H.P., Serrero, G. (1992) Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc. Natl. Acad. Sci. USA 89, 7856–7860.

    Article  PubMed  CAS  Google Scholar 

  21. Kaplan, M.W. (1985) Distribution and axial diffusion of retinol in bleached rod outer segments of frogs (Rana pipiens). Exp. Eye Res. 40, 721–729.

    Article  PubMed  CAS  Google Scholar 

  22. Cornwall, M.C., Tsina, E., Crouch, R.K., Wiggert, B., Chen, C., Koutalos, Y. (2003) Regulation of the visual cycle: Retinol dehydrogenase and retinol fluorescence measurements in vertebrate retina. Adv. Exp. Med. Biol. 533, 353–360.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, C., Tsina, E., Cornwall, M.C., Crouch, R.K., Vijayaraghavan, S., Koutalos, Y. (2005) Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Biophys. J. 88, 2278–2287.

    Article  PubMed  CAS  Google Scholar 

  24. Wu, Q., Chen, C., Koutalos, Y. (2006) All-trans retinol in rod photoreceptor outer segments moves unrestrictedly by passive diffusion. Biophys. J. 91, 4678–4689.

    Article  PubMed  CAS  Google Scholar 

  25. Imanishi, Y., Sun, W., Maeda, T., Maeda, A., Palczewski, K. (2008) Retinyl ester homeostasis in the adipose differentiation-related protein-deficient retina. J. Biol. Chem. 283, 25091–25102.

    Article  PubMed  CAS  Google Scholar 

  26. Rodieck, R.W. (1998) The First Steps in Seeing, Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  27. Jacobson, S.G., Aleman, T.S., Cideciyan, A.V., Heon, E., Golczak, M., Beltran, W.A., Sumaroka, A., Schwartz, S.B., Roman, A.J., Windsor, E.A., Wilson, J.M., Aguirre, G.D., Stone, E.M., Palczewski, K. (2007) Human cone photoreceptor dependence on RPE65 isomerase. Proc. Natl. Acad. Sci. USA 104, 15123–15128.

    Article  PubMed  CAS  Google Scholar 

  28. Maeda, A., Maeda, T., Imanishi, Y., Golczak, M., Moise, A.R., Palczewski, K. (2006) Aberrant metabolites in mouse models of congenital blinding diseases: Formation and storage of retinyl esters. Biochemistry 45, 4210–4219.

    Article  PubMed  CAS  Google Scholar 

  29. Roorda, A., Williams, D.R. (1999) The arrangement of the three cone classes in the living human eye. Nature 397, 520–522.

    Article  PubMed  CAS  Google Scholar 

  30. Rueckel, M., Mack-Bucher, J.A., Denk, W. (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. USA 103, 17137–17142.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants EY009339 and P30 EY11373 from the National Institutes of Health and the Foundation Fighting Blindness.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Imanishi, Y., Palczewski, K. (2010). Visualization of Retinoid Storage and Trafficking by Two-Photon Microscopy. In: Sun, H., Travis, G. (eds) Retinoids. Methods in Molecular Biology, vol 652. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-325-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-325-1_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-324-4

  • Online ISBN: 978-1-60327-325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics