Skip to main content

Genetic Polymorphisms and Human Sensitivity to Opioid Analgesics

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Opioid analgesics are commonly used for the treatment of acute as well as chronic, moderate to severe pain. Well-known, however, is the wide interindividual variability in sensitivity to opioids that exists, which has often been a critical problem in pain treatment. To date, only a limited number of studies have addressed the relationship between human genetic variations and sensitivity to opioids, and such studies are still in their early stages. Therefore, revealing the relationship between genetic variations in many candidate genes and individual differences in sensitivity to opioids will provide valuable information for appropriate individualization of opioid doses required for adequate pain control. Although the methodologies for such association studies can be diverse, here we summarize protocols for investigating the association between genetic polymorphisms and sensitivity to opioids in human volunteers and patients undergoing painful surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikeda K, Ide S, Han W, Hayashida M, Uhl GR, Sora I (2005) How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci 26:311–317

    Article  PubMed  CAS  Google Scholar 

  2. Coulbault L, Beaussier M, Verstuyft C, Weickmans H, Dubert L, Trégouet D, Descot C, Parc Y, Lienhart A, Jaillon P, Becquemont L (2006) Environmental and genetic factors asso­ciated with morphine response in the postoperative period. Clin Pharmacol Ther 79:316–324

    Article  PubMed  CAS  Google Scholar 

  3. Bruehl S, Chung OY, Donahue BS, Burns JW (2006) Anger regulation style, postoperative pain, and relationship to the A118G mu opioid receptor gene polymorphism: a preliminary study. J Behav Med 29:161–169

    Article  PubMed  Google Scholar 

  4. Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B (2006) Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 105:334–337

    Article  PubMed  CAS  Google Scholar 

  5. Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH, Lee TH, Concejero A, Hsu CJ (2006) Association of μ-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 50:787–792

    Article  PubMed  CAS  Google Scholar 

  6. Klepstad P, Rakvåg TT, Kaasa S, Holthe M, Dale O, Borchgrevink PC, Baar C, Vikan T, Krokan HE, Skorpen F (2004) The 118 A > G polymorphism in the human μ-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 48:1232–1239

    Article  PubMed  CAS  Google Scholar 

  7. Hayashida M, Nagashima M, Satoh Y, Katoh R, Tagami M, Ide S, Kasai S, Nishizawa D, Ogai Y, Hasegawa J, Komatsu H, Sora I, Fukuda K, Koga H, Hanaoka K, Ikeda K (2008) Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics 9:1605–1616

    Article  PubMed  CAS  Google Scholar 

  8. 8.Fukuda K, Hayashida M, Ide S, Saita N, Kokita Y, Kasai S, Nishizawa D, Ogai Y, Hasegawa J, Nagashima M, Tagami M, Komatsu H, Sora I, Koga H, Kaneko Y, Ikeda K (2009) Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain 147:194–201

    Article  PubMed  CAS  Google Scholar 

  9. Dripps RD (1963) New classification of physical status. Anesthesiology 24:111

    Google Scholar 

  10. Vinik HR, Kissin I (1998) Rapid develop­ment of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg 86:1307–1311

    PubMed  CAS  Google Scholar 

  11. Wu CL (2005) Acute postoperative pain. In: Miller RD (ed) Miller’s anesthesia, 6th edn. Elsevier/Churchill-Livingstone, Philadelphia, pp 2729–2762

    Google Scholar 

  12. Shi MM, Bleavins MR, de la Iglesia FA (1999) Technologies for detecting genetic polymorphisms in pharmacogenomics. Mol Diagn 4:343–351

    Article  PubMed  CAS  Google Scholar 

  13. Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  PubMed  Google Scholar 

  14. Shi MM (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 47:164–172

    PubMed  CAS  Google Scholar 

  15. Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

    Article  PubMed  Google Scholar 

  16. Jannetto PJ, Laleli-Sahin E, Wong SH (2004) Pharmacogenomic genotyping methodologies. Clin Chem Lab Med 42:1256–1264

    Article  PubMed  CAS  Google Scholar 

  17. Nishizawa D, Nagashima M, Katoh R, Satoh Y, Tagami M, Kasai S, Ogai Y, Han W, Hasegawa J, Shimoyama N, Sora I, Hayashida M, Ikeda K (2009) Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS ONE 4:e7060

    Article  PubMed  Google Scholar 

  18. Germer S, Higuchi R (1999) Single-tube genotyping without oligonucleotide probes. Genome Res 9:72–78

    PubMed  CAS  Google Scholar 

  19. Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 11:163–169

    Article  PubMed  CAS  Google Scholar 

  20. Nishizawa D, Han W, Hasegawa J, Ishida T, Numata Y, Sato T, Kawai A, Ikeda K (2006) Association of μ-opioid receptor gene polymorphism A118G with alcohol dependence in a Japanese population. Neuropsychobiology 53:137–141

    Article  PubMed  CAS  Google Scholar 

  21. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362

    Article  PubMed  CAS  Google Scholar 

  22. Imai K, Ogai Y, Nishizawa D, Kasai S, Ikeda K, Koga H (2007) A novel SNP detection technique utilizing a multiple primer extension (MPEX) on a phospholipid polymer-coated surface. Mol Biosyst 3:547–553

    Article  PubMed  CAS  Google Scholar 

  23. Ide S, Kobayashi H, Ujike H, Ozaki N, Sekine Y, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Iwata N, Tanaka K, Shen H, Iwahashi K, Itokawa M, Minami M, Satoh M, Ikeda K, Sora I (2006) Linkage disequilibrium and association with methamphetamine dependence/psychosis of μ-opioid receptor gene polymorphisms. Pharmacogenomics J 6:179–188

    Article  PubMed  CAS  Google Scholar 

  24. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791

    Article  PubMed  CAS  Google Scholar 

  25. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120

    Article  PubMed  CAS  Google Scholar 

  26. Nyholt DR (2001) Genetic case-control association studies: correcting for multiple testing. Hum Genet 109:564–567

    Article  PubMed  CAS  Google Scholar 

  27. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238

    Article  PubMed  CAS  Google Scholar 

  28. Curtis D, Xu K (2007) Minor differences in haplotype frequency estimates can produce very large differences in heterogeneity test statistics. BMC Genet 8:38

    Article  PubMed  Google Scholar 

  29. Mooney S (2005) Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform 6:44–56

    Article  PubMed  CAS  Google Scholar 

  30. Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28:352–355

    Article  PubMed  CAS  Google Scholar 

  31. Fredman D, Siegfried M, Yuan YP, Bork P, Lehväslaiho H, Brookes AJ (2002) HGVbase: a human sequence variation database emphasizing data quality and a broad spectrum of data sources. Nucleic Acids Res 30:387–391

    Article  PubMed  CAS  Google Scholar 

  32. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  33. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86:248–249

    Google Scholar 

  34. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  35. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  36. Abecasis GR, Cookson WO (2000) GOLD: graphical overview of linkage disequilibrium. Bioinformatics 16:182–183

    Article  PubMed  CAS  Google Scholar 

  37. Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70:157–169

    Article  PubMed  CAS  Google Scholar 

  38. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223

    Article  PubMed  Google Scholar 

  39. Zhang K, Jin L (2003) HaploBlockFinder: haplotype block analyses. Bioinformatics 19:1300–1301

    Article  PubMed  CAS  Google Scholar 

  40. Zhao JH, Lissarrague S, Essioux L, Sham PC (2002) GENECOUNTING: haplotype analysis with missing genotypes. Bioinformatics 18:1694–1695

    Article  PubMed  CAS  Google Scholar 

  41. Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, Sun F (2005) HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics 21:131–134

    Article  PubMed  CAS  Google Scholar 

  42. Greenspan G, Geiger D (2004) High density linkage disequilibrium mapping using models of haplotype block variation. Bioinformatics 20(Suppl 1):i137-i144

    Article  PubMed  CAS  Google Scholar 

  43. Shimo-onoda K, Tanaka T, Furushima K, Nakajima T, Toh S, Harata S, Yone K, Komiya S, Adachi H, Nakamura E, Fujimiya H, Inoue I (2002) Akaike’s information criterion for a measure of linkage disequilibrium. J Hum Genet 47:649–655

    Article  PubMed  CAS  Google Scholar 

  44. Zhao JH, Curtis D, Sham PC (2000) Model-free analysis and permutation tests for allelic associations. Hum Hered 50:133–139

    Article  PubMed  CAS  Google Scholar 

  45. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  46. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91

    Article  PubMed  Google Scholar 

  47. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  48. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed  Google Scholar 

  49. Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epide­miol 25:115–121

    Article  PubMed  Google Scholar 

  50. Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150

    Article  PubMed  CAS  Google Scholar 

  51. Epstein MP, Satten GA (2003) Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet 73:1316–1329

    Article  PubMed  CAS  Google Scholar 

  52. Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered 54:22–33

    Article  PubMed  Google Scholar 

  53. Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21:35–50

    Article  PubMed  Google Scholar 

  54. Zhao LP, Li SS, Khalid N (2003) A method for the assessment of disease associa­tions with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. Am J Hum Genet 72:1231–1250

    Article  PubMed  CAS  Google Scholar 

  55. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Mr. Michael Arends for his assistance with editing the manuscript. This work was supported by grants from the Ministry of Health, Labour and Welfare of Japan (H17-Pharmaco-001, H19-Iyaku-023), the Ministry of Education, Culture, Sports, Science and Technology of Japan (20602020, 19659405, 20390162), The Naito Foundation, and The Mitsubishi Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutaka Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nishizawa, D., Hayashida, M., Nagashima, M., Koga, H., Ikeda, K. (2010). Genetic Polymorphisms and Human Sensitivity to Opioid Analgesics. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics