Skip to main content

Recombinant Cell Lines Stably Expressing Functional Ion Channels

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Ion channels are membrane proteins that gate the flow of ions into and out of a cell. They are present in the membranes of human, animal, plant, and bacterial cells. They are profoundly involved in diverse tasks ranging from neuronal functions to hormonal secretion and cell division. Biophysical characterization and modulation of ion channel targets are important approaches in modern drug discovery. With the heterologous expression of the nicotinic acetylcholine receptor alpha7 (nAChRα7) in a host cell, we show a way to construct and use such a stable cell-based expression system for electrophysiological assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashcroft F (2000) Ion Channels and Disease. Academic Press, San Diego, CA, p 481

    Google Scholar 

  2. Venter JC, Adams MD, Myers EW, Li PW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  3. Li S, Gosling M, Poll CT, Westwick J, Cox B (2005) Therapeutic scope of modulation of non-voltage-gated cation channels. Drug Discov Today 10:129–137

    Article  PubMed  CAS  Google Scholar 

  4. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  5. Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2:439–447

    Article  PubMed  CAS  Google Scholar 

  6. Xu J, Wang X, Ensign B, Li M, Wu L, Guia A, Xu J (2001) Ion-channel assay technologies: quo vadis? Drug Discov Today 6:1278–1287

    Article  PubMed  CAS  Google Scholar 

  7. Wang X, Li M (2003) Automated electrophy­siology: high throughput of art. Assay Drug Dev Technol 1:695–708

    Article  PubMed  CAS  Google Scholar 

  8. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    Article  PubMed  CAS  Google Scholar 

  9. Bianchi BR, Moreland RB, Faltynek CR, Chen J (2007) Application of large-scale transiently transfected cells to functional assays of ion channels: different targets and assay formats. Assay Drug Dev Technol 5:417–424

    Article  PubMed  CAS  Google Scholar 

  10. Deutsch C (2003) The birth of a channel. Neuron 40:265–276

    Article  PubMed  CAS  Google Scholar 

  11. Jenkinson DH (2006) Potassium channels-multiplicity and challenges. Br J Pharmacol 147(Suppl 1):63–71

    Google Scholar 

  12. Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F, Nozulak J, Enz A, Bilbe G, McAllister K, Hoyer D (2009) The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 56:254–256

    Article  PubMed  CAS  Google Scholar 

  13. Lyford LK, Rosenberg RL (1999) Cell-free expression and functional reconstitution of homo-oligomeric alpha7 nicotinic acetylcholine receptors into planar lipid bilayers. J Biol Chem 274:25675–25681

    Article  PubMed  CAS  Google Scholar 

  14. Treinin M (2008) RIC-3 and nicotinic acetylcholine receptors: biogenesis, properties, and diversity. Biotechnol J 3:1539–1547

    Article  PubMed  CAS  Google Scholar 

  15. Zwart R, Vijverberg HP (1997) Potentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and non­competitive effects. Mol Pharmacol 52:886–895

    PubMed  CAS  Google Scholar 

  16. Gault J, Robinson M, Berger R, Drebing C et al (1998) Genomic organization and partial duplication of the human alpha7 neuronal nico­tinic acetylcholine receptor gene (CHRNA7). Genomics 52:173–185

    Article  PubMed  CAS  Google Scholar 

  17. Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4:919–928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Céline Wimmersberger for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Steiner, F., Ghose, S., Thomet, U. (2010). Recombinant Cell Lines Stably Expressing Functional Ion Channels. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics