Imaging Vasculature and Lymphatic Flow in Mice Using Quantum Dots

  • Byron Ballou
  • Lauren A. Ernst
  • Susan Andreko
  • James A. J. Fitzpatrick
  • B. Christoffer Lagerholm
  • Alan S. Waggoner
  • Marcel P. Bruchez
Part of the Methods in Molecular Biology™ book series (MIMB, volume 574)


Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail methods for use with commercially available quantum dots and discuss common difficulties.

Key words

Quantum dots in vivo animals vasculature circulation lymph nodes sentinel lymph nodes lymphatic vessels 



The authors wish to acknowledge financial support from the NIH BRP program under grant number EB00364. MB also wishes to acknowledge Carnegie Mellon University for faculty start-up funds.


  1. 1.
    Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  2. 2.
    Chan, W. C., and Nie, S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou, M., and Ghosh, I. (2007) Quantum dots and peptides: a bright future together. Biopolymers 88, 325–339.PubMedCrossRefGoogle Scholar
  4. 4.
    Jaiswal, J. K., and Simon, S. M. (2007) Imaging single events at the cell membrane. Nat Chem Biol 3, 92–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith, A. M., Ruan, G., Rhyner, M. N., and Nie, S. (2006) Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34, 3–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Pinaud, F., Michalet, X., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Iyer, G., and Weiss, S. (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687.PubMedCrossRefGoogle Scholar
  7. 7.
    Sargent, E. H. (2005) Infrared quantum dots. Adv Mater 17, 515–522.CrossRefGoogle Scholar
  8. 8.
    Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.PubMedCrossRefGoogle Scholar
  9. 9.
    Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435–446.PubMedCrossRefGoogle Scholar
  10. 10.
    Alivisatos, A. P., Gu, W., and Larabell, C. (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7, 55–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., Nakayama, A., Parker, J. A., Mihaljevic, T., Laurence, R. G., Dor, D. M., Cohn, L. H., Bawendi, M. G., and Frangioni, J. V. (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Frangioni, J. V., Kim, S. -W., Ohnishi, S., Kim, S., and Bawendi, M. G. (2007) Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol 374, 147–159.PubMedGoogle Scholar
  13. 13.
    Zimmer, J. P., Kim, S. W., Ohnishi, S., Tanaka, E., Frangioni, J. V., and Bawendi, M. G. (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128, 2526–2527.PubMedCrossRefGoogle Scholar
  14. 14.
    Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Ipe, B. I., Bawendi, M. G., and Frangioni, J. V. (2007) Renal clearance of quantum dots. Nat Biotechnol 25, 1165–1170.PubMedCrossRefGoogle Scholar
  15. 15.
    Lewinski, N., Colvin, V., and Drezek, R. (2008) Cytotoxicity of nanoparticles. Small 4, 26–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer, H. C., and Chan, W. C. (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18, 565–571.PubMedCrossRefGoogle Scholar
  17. 17.
    Choi, A. O., Cho, S. J., Desbarats, J., Lovric, J., and Maysinger, D. (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 5, 1.PubMedCrossRefGoogle Scholar
  18. 18.
    Chithrani, B. D., and Chan, W. C. (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7, 1542–1550.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, T. T., Stilwell, J. L., Gerion, D., Ding, L. H., Elboudwarej, O., Cooke, P. A., Gray, J. W., Alivisatos, A. P., and Chen, F. F. (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6, 800–808.PubMedCrossRefGoogle Scholar
  20. 20.
    Hardman, R. (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114, 165–172.PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer, H. C., Liu, L. C., Pang, K. S., and Chan, W. C. W. (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16, 1299–1305.CrossRefGoogle Scholar
  22. 22.
    Delehanty, J. B., Medintz, I. L., Pons, T., Brunel, F. M., Dawson, P. E., and Mattoussi, H. (2006) Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconj Chem 17, 920–927.CrossRefGoogle Scholar
  23. 23.
    Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L., and Drezek, R. (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2, 1412–1417.PubMedCrossRefGoogle Scholar
  24. 24.
    Lovric, J., Bazzi, H. S., Cuie, Y., Fortin, G. R., Winnik, F. M., and Maysinger, D. (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83, 377–385.PubMedCrossRefGoogle Scholar
  25. 25.
    Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Munoz Javier, A., Gaub, H. E., Stolzle, S., Fertig, N., and Parak, W. J. (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5, 331–338.PubMedCrossRefGoogle Scholar
  26. 26.
    Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K. (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48, 669–675.PubMedGoogle Scholar
  27. 27.
    Derfus, A. M., Chan, W. C. W., and Bhatia, S. N. (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4, 11–18.CrossRefGoogle Scholar
  28. 28.
    Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y. F., Ohta, T., Yasuhara, M., Suzuki, K., and Yamamoto, K. (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4, 2163–2169.CrossRefGoogle Scholar
  29. 29.
    Lovric, J., Cho, S. J., Winnik, F. M., and Maysinger, D. (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12, 1227–1234.PubMedCrossRefGoogle Scholar
  30. 30.
    Samia, A. C., Chen, X., and Burda, C. (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125, 15736–15737.PubMedCrossRefGoogle Scholar
  31. 31.
    Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M., and Baba, Y. (2004) Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4, 1567–1573.CrossRefGoogle Scholar
  32. 32.
    Dayal, S., Oleinick, N. L., Kenney, M. E., and Burda, C. (2007) Quantum dot-based energy transfer to photodynamic therapy agents. Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29, 2007, PHYS-325.Google Scholar
  33. 33.
    Tsay, J. M., Trzoss, M., Shi, L., Kong, X., Selke, M., Jung, M. E., and Weiss, S. (2007) Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 129, 6865–6871.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P. (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21, 41–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P., and Waggoner, A. S. (2004) Noninvasive imaging of quantum dots in mice. Bioconj Chem 15, 79–86.CrossRefGoogle Scholar
  36. 36.
    Ballou, B., Ernst, L. A., Andreko, S., Harper, T., Fitzpatrick, J. A. J., Waggoner, A. S., and Bruchez, M. P. (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconj Chem 18, 389–396.CrossRefGoogle Scholar
  37. 37.
    Bumol, T. F., and Reisfeld, R. A. (1982) Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells. Proc Natl Acad Sci USA 79 , 1245–1249.PubMedCrossRefGoogle Scholar
  38. 38.
    Giuliano, A. E., Irie, R. F., Morton, D. L., and Ramming, K. P. (1978) Quantitative variations in expression of oncofetal antigens on human melanomas in culture. Proc Am Assoc Cancer Res 19 , 133.Google Scholar
  39. 39.
    Ballou, B., Levine, G., Hakala, T. R., and Solter, D. (1979) Tumor location detected with radioactively labeled monoclonal antibody and external scintigraphy. Science 206, 844–847.PubMedCrossRefGoogle Scholar
  40. 40.
    Parungo, Cherie P., Soybel, David I., Colson, Yolonda L., Kim S.-W., Ohnishi, S., DeGrand, Alec M., Laurence, Rita G., Soltesz, Edward G., Chen, Fredrick Y., Cohn, Lawrence H., Bawendi, Moungi G., and Frangioni, John V. (2007) Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics. Ann Surg Oncol 14, 286–298.PubMedCrossRefGoogle Scholar
  41. 41.
    Parungo, C. P., Colson, Y. L., Kim, S. W., Kim, S., Cohn, L. H., Bawendi, M. G., and Frangioni, J. V. (2005) Sentinel lymph node mapping of the pleural space. Chest 127, 1799–1804.PubMedCrossRefGoogle Scholar
  42. 42.
    Parungo, C. P., Ohnishi, S., De Grand, A. M., Laurence, R. G., Soltesz, E. G., Colson, Y. L., Kang, P. M., Mihaljevic, T., Cohn, L. H., and Frangioni, J. V. (2004) In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11, 1085–1092.PubMedCrossRefGoogle Scholar
  43. 43.
    Parungo, C. P., Ohnishi, S., Kim, S. W., Kim, S., Laurence, R. G., Soltesz, E. G., Chen, F. Y., Colson, Y. L., Cohn, L. H., Bawendi, M. G., and Frangioni, J. V. (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129, 844–850.PubMedCrossRefGoogle Scholar
  44. 44.
    Soltesz, E. G., Kim, S., Kim, S. W., Laurence, R. G., De Grand, A. M., Parungo, C. P., Cohn, L. H., Bawendi, M. G., and Frangioni, J. V. (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13, 386–396.PubMedCrossRefGoogle Scholar
  45. 45.
    Soltesz, E. G., Kim, S., Laurence, R. G., DeGrand, A. M., Parungo, C. P., Dor, D. M., Cohn, L. H., Bawendi, M. G., Frangioni, J. V., and Mihaljevic, T. (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thor Surg 79, 269–277; discussion 69–77.CrossRefGoogle Scholar
  46. 46.
    Hama, Y., Koyama, Y., Urano, Y., Choyke, Peter L., and Kobayashi, H. (2007) Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103, 23–28.PubMedCrossRefGoogle Scholar
  47. 47.
    Kobayashi, H., Hama, Y., Koyama, Y., Barrett, T., Regino, C. A. S., Urano, Y., and Choyke, P. L. (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7, 1711–1716.PubMedCrossRefGoogle Scholar
  48. 48.
    Ballou, B., Ernst, L. A., Andreko, S., Lagerholm, B. C., Bruchez, M. P., and Waggoner, A. S. (2008) Long-term retention of fluorescent quantum dots in vivo, in “Nanomaterials for Application in Medicine and Biology” (Giersig, M., and Khomutov, G. B., Eds.), Vol. XVI, pp. 127–137, Springer-Verlag, Dordrecht.CrossRefGoogle Scholar
  49. 49.
    Kowala, M. C., and Schoefl, G. I. (1986) The popliteal lymph node of the mouse: internal architecture, vascular distribution and lymphatic supply. J Anat 148, 25–46.PubMedGoogle Scholar
  50. 50.
    Ballou, B. (2005) Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 70, 103–120.PubMedCrossRefGoogle Scholar
  51. 51.
    Jackson, H., Muhammad, O., Daneshvar, H., Nelms, J., Popescu, A., Vogelbaum Michael, A., Bruchez, M., and Toms Steven, A. (2007) Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60, 524–529; discussion 29–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Muhammad, O., Popescu, A., and Toms Steven, A. (2007) Macrophage-mediated colocalization of quantum dots in experimental glioma. Methods Mol Biol 374, 161–172.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Byron Ballou
    • 1
  • Lauren A. Ernst
    • 1
  • Susan Andreko
    • 1
  • James A. J. Fitzpatrick
    • 1
  • B. Christoffer Lagerholm
    • 2
  • Alan S. Waggoner
    • 1
    • 3
  • Marcel P. Bruchez
    • 1
    • 4
  1. 1.Molecular Biosensor and Imaging Center, Carnegie Mellon UniversityPittsburghUSA
  2. 2.MEMPHYS, University of Southern DenmarkOdenseDenmark
  3. 3.Department of BiologyCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations