Skip to main content

Bioluminescence Analysis of Smad-Dependent TGF-β Signaling in Live Mice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 574))

Abstract

TGF-β signaling via the Smad2/3 pathway has key roles in development and tissue homeostasis. Perturbations of the TGF-β signaling are involved in the pathogenesis of many human diseases, including cancer, fibrotic disorders, developmental defects, and neurodegeneration. To study the temporal and spatial patterns of Smad2/3-dependent signaling in living animals, we engineered transgenic mice with a Smad-responsive luciferase reporter (SBE-luc mice). Smad2/3-dependent signaling can be assessed non-invasively in living mice by bioluminescence imaging. To identify the cellular source of the bioluminescence signal, we generated new reporter mice expressing a trifusion protein containing luciferase, red fluorescent protein (RFP), and thymidine kinase under the control of the same SBE promoter (SBE-lucRT mice). SBE-luc and SBE-lucRT mice can be used to study temporal, tissue-specific activation of Smad2/3-dependent signaling in living mice as well as for the identification of endogenous or synthetic modulators of this pathway.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dennler, S., Goumans, M. J., and ten Dijke, P. (2002) Transforming growth factor beta signal transduction. J Leukoc Biol 71, 731–740.

    PubMed  CAS  Google Scholar 

  2. Massague, J., Blain, S. W., and Lo, R. S. (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309.

    Article  PubMed  CAS  Google Scholar 

  3. Shi, Y., and Massague, J. (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700.

    Article  PubMed  CAS  Google Scholar 

  4. Mazerbourg, S., Klein, C., Roh, J., Kaivo-Oja, N., Mottershead, D. G., Korchynskyi, O., Ritvos, O., and Hsueh, A. J. (2004) Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol 18, 653–665.

    Article  PubMed  CAS  Google Scholar 

  5. Oh, S. P., Yeo, C. Y., Lee, Y., Schrewe, H., Whitman, M., and Li, E. (2002) Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes Dev 16, 2749–2754.

    Article  PubMed  CAS  Google Scholar 

  6. Rebbapragada, A., Benchabane, H., Wrana, J. L., Celeste, A. J., and Attisano, L. (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23, 7230–7242.

    Article  PubMed  CAS  Google Scholar 

  7. Reissmann, E., Jornvall, H., Blokzijl, A., Andersson, O., Chang, C., Minchiotti, G., Persico, M. G., Ibanez, C. F., and Brivanlou, A. H. (2001) The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 15, 2010–2022.

    Article  PubMed  CAS  Google Scholar 

  8. Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R., and Sporn, M. B. (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–625.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, J. S., Yoon, S. S., Kim, Y. H., and Ryu, J. S. (1996) Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute stroke. Stroke 27, 1553–1557.

    Article  PubMed  CAS  Google Scholar 

  10. Mogi, M., Harada, M., Kondo, T., Narabayashi, H., Riederer, P., and Nagatsu, T. (1995) Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease. Neurosci Lett 193, 129–132.

    Article  PubMed  CAS  Google Scholar 

  11. van der Wal, E. A., Gomez-Pinilla, F., and Cotman, C. W. (1993) Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies. Neuroreport 4, 69–72.

    Article  PubMed  CAS  Google Scholar 

  12. Platten, M., Wick, W., and Weller, M. (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52, 401–410.

    Article  PubMed  CAS  Google Scholar 

  13. Lin, A. H., Luo, J., Mondshein, L. H., ten Dijke, P., Vivien, D., Contag, C. H., and Wyss-Coray, T. (2005) Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J Immunol 175, 547–554.

    PubMed  CAS  Google Scholar 

  14. Luo, J., Lin, A. H., Masliah, E., and Wyss-Coray, T. (2006) Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration. Proc Natl Acad Sci USA 103, 18326–18331.

    Article  PubMed  CAS  Google Scholar 

  15. Luo, J., Ho, P. P., Buckwalter, M. S., Hsu, T., Lee, L. Y., Zhang, H., Kim, D. K., Kim, S. J., Gambhir, S. S., Steinman, L., and Wyss-Coray, T. (2007) Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J Clin Invest 117, 3306–3315.

    Article  PubMed  CAS  Google Scholar 

  16. Ray, P., De, A., Min, J. J., Tsien, R. Y., and Gambhir, S. S. (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64, 1323–1330.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank B. Debsi, W. Wang, H. Yang, and E. Hashemi for animal husbandry and genotyping. This work was supported by grants from NIH (AG23708, AG20603) and the John Douglas French Alzheimer’s Foundation (T.W-C).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luo, J., Wyss-Coray, T. (2009). Bioluminescence Analysis of Smad-Dependent TGF-β Signaling in Live Mice. In: Rich, P., Douillet, C. (eds) Bioluminescence. Methods in Molecular Biology™, vol 574. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-321-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-321-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-320-6

  • Online ISBN: 978-1-60327-321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics