Advertisement

Quantitative In Vivo Imaging of Non-viral-Mediated Gene Expression and RNAi-Mediated Knockdown

  • Garrett R. Rettig
  • Kevin G. Rice
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 574)

Abstract

Bioluminescent imaging (BLI) coupled with hydrodynamic (HD) dosing of luciferase-expressing plasmid DNA (pDNA) has proven to be a powerful method for quantitatively benchmarking non-viral gene expression in the liver. The expression of luciferase or knockdown of luciferase by RNA interference (RNAi) in the liver is quantifiable over five-orders of magnitude in living mice. The photon emission data derived from BLI can be converted to the absolute amount of luciferase expression by comparison with a standard curve developed using luciferase as a primary standard. Quantitative BLI is also applicable to luciferase expression in other tissues, such as skeletal muscle, following intramuscular (IM) dosing and electroporation (EP) of pDNA. The primary advantages of using quantitative BLI in mouse liver and muscle are the sensitivity of the assay, the speed and ease of making measurements, the precision and linearity of the dose–response curves, and the ability to conduct serial sampling of gene expression over many days or months while eliminating the need to euthanize animals.

Key words

Bioluminescent imaging hydrodynamic dosing non-viral gene delivery intramuscular dosing 

Notes

Acknowledgments

The authors gratefully acknowledge support for this work from NIH DK063196, DK066211, and Pharmacological Sciences Training Grant (GM 067795).

References

  1. 1.
    Kawabata, K., Takakura, Y., and Hashida, M. (1995) The Fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res 12, 825–830.PubMedCrossRefGoogle Scholar
  2. 2.
    Boado, R. (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res 24, 1772–1787.PubMedCrossRefGoogle Scholar
  3. 3.
    Nigg, E. A. (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787.PubMedCrossRefGoogle Scholar
  4. 4.
    Wolff, J. A., and Budker, V. (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54, 3–20.PubMedGoogle Scholar
  5. 5.
    Greer, R. F. 3rd., and Szalay, A. A. (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17, 43–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu, F., Song, Y., and Liu, D. (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6, 1258–1266.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, G., Budker, V., and Wolff, J. A. (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10, 1735–1737.PubMedCrossRefGoogle Scholar
  8. 8.
    Suda, T., and Liu, D. (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15, 2063–2069.PubMedCrossRefGoogle Scholar
  9. 9.
    Rettig, G., McAnuff, M., Kim, J., Liu, D., and Rice, K. G. (2006) Quantitative bioluminscence imaging of transgene expression in vivo. Anal Biochem 335, 90–94.CrossRefGoogle Scholar
  10. 10.
    Pierce, G. F., Lillicrap, D., Pipe, S. W., and Vandendriessche, T. (2007) Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment. J Thromb Haemost 5, 901–906.PubMedCrossRefGoogle Scholar
  11. 11.
    Craft, N., Bruhn, K. W., Nguyen, B. D., Prins, R., Liau, L. M., Collisson, E. A., De, A., Kolodney, M. S., Gambhir, S. S., and Miller, J. F. (2005) Bioluminescent imaging of melanoma in live mice. J Invest Dermatol 125, 159–165.PubMedCrossRefGoogle Scholar
  12. 12.
    Jenkins, D., Oei, Y., Hornig, Y., Yu, S., Dusich, J., Purchio, T., and Contag, P. (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20, 733–744.PubMedCrossRefGoogle Scholar
  13. 13.
    van der Pluijm, G., Que, I., Sijmons, B., Buijs, J. T., Lowik, C. W., Wetterwald, A., Thalmann, G. N., Papapoulos, S. E., and Cecchini, M. G. (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65, 7682–7690.PubMedGoogle Scholar
  14. 14.
    Drake, J. M., Gabriel, C. L., and Henry, M. D. (2005) Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 22, 674–684.PubMedCrossRefGoogle Scholar
  15. 15.
    Banerjee, P., Reichardt, W., Weissleder, R., and Bogdanov, A., Jr. (2004) Novel hyperbranched dendron for gene transfer in vitro and in vivo. Bioconjugate Chem 15, 960–968.CrossRefGoogle Scholar
  16. 16.
    Iyer, M., Berenji, M., Templeton, N. S., and Gambhir, S. S. (2002) Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol Ther 6, 555–562.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshimitsu, M., Sato, T., Tao, K., Walia, J. S., Rasaiah, V. I., Sleep, G. T., Murray, G. J., Poeppl, A. G., Underwood, J., West, L., Brady, R. O., and Medin, J. A. (2004) Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors. Proc Natl Acad Sci USA 101 , 16909–16914.PubMedCrossRefGoogle Scholar
  18. 18.
    Bartlett, D. W., and Davis, M. E. (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34, 322–333.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, J. C., Sundaresan, G., Iyer, M., and Gambhir, S. S. (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther J Amer Soc Gene Ther 4, 297–306.Google Scholar
  20. 20.
    McCaffrey, A., Kay, M. A., and Contag, C. H. (2003) Advancing molecular therapies through in vivo bioluminescent imaging. Mol Imaging 2, 75–86.PubMedCrossRefGoogle Scholar
  21. 21.
    McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., and Kay, M. A. (2002) RNA interference in adult mice. Nature 418, 38–39.PubMedCrossRefGoogle Scholar
  22. 22.
    McAnuff, M. A., Rettig, G. R., and Rice, K. G. (2007) Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci 96, 2922–2930.PubMedCrossRefGoogle Scholar
  23. 23.
    Bartlett, D. W., Su, H., Hildebrandt, I. G., Weer, W. A., and Davis, M. E. (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRAN nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci 104 , 15549–15554.Google Scholar
  24. 24.
    Contag, C. H., and Ross, B. D. (2002) It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16, 378–387.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, K. H., Byun, S. S., Paik, J. Y., Lee, S. Y., Song, S. H., Choe, Y. S., and Kim, B. T. (2003) Cell uptake and tissue distribution of radioiodine labelled d-luciferin: implications for luciferase based gene imaging. Nucl Med Commun 24, 1003–1009.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao, H., Doyle, T. C., Coquoz, O., Kalish, F., Rice, B. W., and Contag, C. H. (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10 , 41210.PubMedCrossRefGoogle Scholar
  27. 27.
    Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P. L. (1990) Direct gene transfer into mouse muscle in vivo. Science (New York, N.Y.) 247, 1465–1468.CrossRefGoogle Scholar
  28. 28.
    Prud'homme, G. J., Glinka, Y., Khan, A. S., and Draghia-Akli, R. (2006) Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 6, 243–273.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, G., Gao, X., Song, Y. K., Vollmer, R., Stolz, D.B., Gaskowski, J. Z., Dean, D. A., and Liu, D. (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11, 675–682.PubMedCrossRefGoogle Scholar
  30. 30.
    Crespo, A., Peydro, A., Dasi, F., Benet, M., Calvete, J. J., Revert, F., and Aliño, S. F. (2005) Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles. Gene Ther 12, 927–935.PubMedCrossRefGoogle Scholar
  31. 31.
    Trollet, C., Bloquel, C., Scherman, D., and Bigey, P. (2006) Electrotransfer into skeletal muscle for protein expression. Curr Gene Ther 6, 561–578.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu, F., and Huang, L. (2002) A syringe electrode device for simultaneous injection of DNA and electrotransfer. Mol Ther 5, 323–328.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Garrett R. Rettig
    • 1
  • Kevin G. Rice
    • 1
  1. 1.Division of Medicinal and Natural Products Chemistry, College of PharmacyUniversity of IowaIowa CityUSA

Personalised recommendations