Advertisement

Bioluminescent Monitoring of In Vivo Colonization and Clearance Dynamics by Light-Emitting Bacteria

  • Siouxsie Wiles
  • Brian D. Robertson
  • Gad Frankel
  • Angela Kerton
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 574)

Abstract

Bioluminescence is an excellent reporter system for analysing bacterial colonization and clearance dynamics in vivo. Many bacterial species have been rendered bioluminescent, allowing the sensitive detection of bacterial burden and metabolic activity in real-time and in situ in living animals. In this chapter we describe the protocols for characterizing in vivo infection models using bioluminescent bacteria: from real-time imaging in living animals by bioluminescence imaging (BLI) to ex vivo BLI of harvested organs and tissues and, finally, to quantification of bacterial numbers in organ and tissue homogenates by luminometry and viable counts. While the lux operon from Photorhabdus luminescens is ideally suited for use in such models, there may be times when alternative luciferases, such as those from the firefly (luc) or marine copepods (Gluc), may be more appropriate. Here we describe the protocols required to monitor colonization and clearance dynamics using bioluminescent bacteria that are lux-, luc-, or Gluc-positive.

Key words

Bioluminescence imaging bacteria in vivo infection model colonization dynamics luminometry luciferase luciferin coelenterazine 

Notes

Acknowledgments

The authors would like to thank the Wellcome Trust for supporting this work.

References

  1. 1.
    Prosser, J. I., Killham, K., Glover, L. A., and Rattray, E. A. (1996) Luminescence-based systems for detection of bacteria in the environment. Crit Rev Biotechnol 16, 157–183.PubMedCrossRefGoogle Scholar
  2. 2.
    Francis, K. P., Joh, D., Bellinger-Kawahara, C., Hawkinson, M. J., Purchio, T. F., and Contag, P. R. (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68, 3594–3600.PubMedCrossRefGoogle Scholar
  3. 3.
    Engebrecht, J., Nealson, K., and Silverman, M. (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773–781.PubMedCrossRefGoogle Scholar
  4. 4.
    de Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82, 7870–7873.PubMedCrossRefGoogle Scholar
  5. 5.
    Frackman, S., Anhalt, M., and Nealson, K. H. (1990) Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. J Bacteriol 172, 5767–5773.PubMedGoogle Scholar
  6. 6.
    Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., and Breakefield, X. O. (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11, 435–443.PubMedCrossRefGoogle Scholar
  7. 7.
    McElroy, W. D. (1951) Properties of the reaction utilizing adenosinetriphosphate for bioluminescence. J Biol Chem 191, 547–557.PubMedGoogle Scholar
  8. 8.
    Verhaegent, M., and Christopoulos, T. K. (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74, 4378–4385.PubMedCrossRefGoogle Scholar
  9. 9.
    Campbell, A. K. (1989) Living light: biochemistry, applications. Essays Biochem 24, 41–81.PubMedGoogle Scholar
  10. 10.
    Riendeau, D., and Meighen, E. (1981) Fatty acid reductase in bioluminescent bacteria. Resolution from aldehyde reductases and characterization of the aldehyde product. Can J Biochem 59, 440–446.PubMedCrossRefGoogle Scholar
  11. 11.
    Riendeau, D., and Meighen, E. (1985) Enzymatic reduction of fatty acids and acyl-CoAs to long chain aldehydes and alcohols. Experientia 41, 707–713.PubMedCrossRefGoogle Scholar
  12. 12.
    Riedel, C. U., Monk, I. R., Casey, P. G., Morrissey, D., O'Sullivan, G. C., Tangney, M., Hill, C., and Gahan, C. G. (2007) Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol 73, 3091–3094.PubMedCrossRefGoogle Scholar
  13. 13.
    Wiles, S., Clare, S., Harker, J., Huett, A., Young, D., Dougan, G., and Frankel, G. (2004) Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol 6, 963–972.PubMedCrossRefGoogle Scholar
  14. 14.
    Beard, S. J., Salisbury, V., Lewis, R. J., Sharpe, J. A., and MacGowan, A. P. (2002) Expression of lux genes in a clinical isolate of Streptococcus pneumoniae: using bioluminescence to monitor gemifloxacin activity. Antimicrob Agents Chemother 46, 538–542.PubMedCrossRefGoogle Scholar
  15. 15.
    Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Orihuela, C., Tuomanen, E., Purchio, A. F., and Contag, P. R. (2005) Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol Imaging 4, 137–142.PubMedGoogle Scholar
  16. 16.
    Xiong, Y. Q., Willard, J., Kadurugamuwa, J. L., Yu, J., Francis, K. P., and Bayer, A. S. (2005) Real-time in vivo bioluminescent imaging for evaluating the efficacy of antibiotics in a rat Staphylococcus aureus endocarditis model. Antimicrob Agents Chemother 49, 380–387.PubMedCrossRefGoogle Scholar
  17. 17.
    Basaglia, M., Povolo, S., and Casella, S. (2007) Resuscitation of viable but not culturable Sinorhizobium meliloti 41 pRP4-luc: effects of oxygen and host plant. Curr Microbiol 54, 167–174.PubMedCrossRefGoogle Scholar
  18. 18.
    Sasahara, K. C., Gray, M. J., Shin, S. J., and Boor, K. J. (2004) Detection of viable Mycobacterium avium subsp. paratuberculosis using luciferase reporter systems. Foodborne Pathog Dis 1, 258–266.PubMedCrossRefGoogle Scholar
  19. 19.
    Wiles, S., Ferguson, K., Stefanidou, M., Young, D. B., and Robertson, B. D. (2005) Alternative luciferase for monitoring bacterial cells under adverse conditions. Appl Environ Microbiol 71, 3427–3432.PubMedCrossRefGoogle Scholar
  20. 20.
    Francis, K. P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M. J., Xiao, G., Purchio, T. F., Caparon, M. G., Lipsitch, M., and Contag, P. R. (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 69, 3350–3358.PubMedCrossRefGoogle Scholar
  21. 21.
    Seliger, H. H., and Mc, E. W. (1960) Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys 88, 136–141.PubMedCrossRefGoogle Scholar
  22. 22.
    Hutchens, M., and Luker, G. D. (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9, 2315–2322PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao, H., Doyle, T. C., Wong, R. J., Cao, Y., Stevenson, D. K., Piwnica-Worms, D., and Contag, C. H. (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3, 43–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Flecknell, P. (1992) Laboratory animals anaesthesia, Second edition, Academic Press, London.Google Scholar
  25. 25.
    Mundy, R., MacDonald, T. T., Dougan, G., Frankel, G., and Wiles, S. (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7, 1697–1706.PubMedCrossRefGoogle Scholar
  26. 26.
    Riska, P. F., Su, Y., Bardarov, S., Freundlich, L., Sarkis, G., Hatfull, G., Carriere, C., Kumar, V., Chan, J., and Jacobs, W. R., Jr. (1999) Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 37, 1144–1149.PubMedGoogle Scholar
  27. 27.
    Waynforth, H. B., and Flecknell, P.A. (1992) Experimental and surgical techniques in the rat, Second edition, Academic Press, London.Google Scholar
  28. 28.
    Bloquel, C., Trollet, C., Pradines, E., Seguin, J., Scherman, D., and Bureau, M. F. (2006) Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee. BMC Biotechnol 6, 16.PubMedCrossRefGoogle Scholar
  29. 29.
    Buckley, S. M. K., Howe, S.J., Rahim, A. A., Buning, H., McIntosh, J., Wong, S-P., Baker, A. H., Nathwani, A., Thrasher, A. J., Coutelle, C., McKay, T. R., and Waddington, S. N. (2008) Luciferin Detection After Intranasal Vector Delivery Is Improved by Intranasal Rather Than Intraperitoneal Luciferin Administraton. Human Gene Theraphy 19, 1050–1056.CrossRefGoogle Scholar
  30. 30.
    Gross, S., Abraham, U., Prior, J. L., Herzog, E. D., and Piwnica-Worms, D. (2007) Continuous delivery of d-luciferin by implanted micro-osmotic pumps enables true real-time bioluminescence imaging of luciferase activity in vivo. Mol Imaging 6, 121–130.PubMedGoogle Scholar
  31. 31.
    Hiler, D. J., Greenwald, M. L., and Geusz, M. E. (2006) Imaging gene expression in live transgenic mice after providing luciferin in drinking water. Photochem Photobiol Sci 5, 1082–1085.PubMedCrossRefGoogle Scholar
  32. 32.
    Wiles, S., Crepin, V. F., Childs, G., Frankel, G., and Kerton, A. (2007) Use of biophotonic imaging as a training aid for administration of substances in laboratory rodents. Lab Anim 41, 321–328.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiles, S., Pickard, K. M., Peng, K., MacDonald, T. T., and Frankel, G. (2006) In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Infect Immun 74, 5391–5396.PubMedCrossRefGoogle Scholar
  34. 34.
    Diehl, K. H., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., Vidal, J. M., and van de Vorstenbosch, C. (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21, 15–23.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Siouxsie Wiles
    • 1
  • Brian D. Robertson
    • 1
  • Gad Frankel
    • 2
  • Angela Kerton
    • 3
  1. 1.Department of Infectious Diseases and ImmunityImperial College LondonLondonUK
  2. 2.Division of Cell and Molecular BiologyImperial CollegeLondonUK
  3. 3.Central Biomedical ServicesImperial CollegeLondonUK

Personalised recommendations