Skip to main content

Liquid Chromatography MALDI MS/MS for Membrane Proteome Analysis

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 528))

Abstract

Liquid chromatography (LC) can be combined with matrix-assisted laser-desorption ionization (MALDI) mass-spectrometry (MS) by using automated off-line fraction collection of eluates onto a MALDI plate. Commercial tandem MS systems are available for generating product ion spectra of MALDI-produced peptide ions. The MALDI MS/MS spectra can be searched against a proteome database for protein identification. In this chapter, a protocol of sequential solubilization and digestion of membrane proteins involving methanol- and SDS-assisted trypsin digestion and microwave-assisted acid hydrolysis is presented. The process of LC eluate deposition onto a MALDI plate along with practical considerations for achieving optimal performance of eluate deposition is described. Issues related to MALDI MS and MS/MS spectral acquisition are discussed. Database searching and manual inspection of MS/MS spectra of singly charged MALDI-produced peptide ions for positive protein identification are also addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ji C, Zhang N, Damaraju S, Damaraju VL, Carpenter P, Cass CE, Li L. (2007) A study of reproducibility of guanidination-dimethylation labeling and liquid chromatography matrix-assisted laser-desorption ionization mass spectrometry for relative proteome quantification. Anal Chim Acta 585, 219–226.

    Article  CAS  PubMed  Google Scholar 

  2. Gao J, Gao Y, Ju Y, Yang J, Wu Q, Zhang J, Du X, Wang Z, Song Y, Li H, Luo X, Ren F, Li J, Chen Y, Wang L, Xu H, Liu X, Wang J, Zhang Y, Cai Y, Cui Y, Qian X, He F, Li M, Sun Q-H. (2006) Proteomics-based generation and characterization of monoclonal antibodies against human liver mitochondrial proteins. Proteomics 6, 427–437.

    Article  CAS  PubMed  Google Scholar 

  3. Song W, Lin Q, Joshi SB, Lim TK, Hew C-L. (2006) Proteomic studies of the Singapore grouper iridovirus. Mol Cell Proteomics 5, 256–264.

    CAS  PubMed  Google Scholar 

  4. Schmidt F, Dahlmann B, Janek K, Kloss A, Wacker M, Ackermann R, Thiede B, Jungblut PR. (2006) Comprehensive quantitative proteome analysis of 20S proteasome subtypes from rat liver by isotope-coded affinity tag and 2-D gel-based approaches. Proteomics 6, 4622–4632.

    Article  CAS  PubMed  Google Scholar 

  5. Hattan SJ, Parker KC. (2006) Methodology utilizing MS signal intensity and LC retention time for quantitative analysis and precursor ion selection in proteomic LC-MALDI analyses. Anal Chem 78, 7986–7996.

    Article  CAS  PubMed  Google Scholar 

  6. Gevaert K, Pinxteren J, Demol H, Hugelier K, Staes A, Van Damme J, Martens L, Vandekerckhove J. (2006) Four stage liquid chromatographic selection of methionyl peptides for peptide-centric proteome analysis: The proteome of human multipotent adult progenitor cells. J Proteome Res 5, 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  7. Li N, Wang N, Zheng J, Liu XM, Lever OW, Erickson PM, Li L. (2005) Characterization of human tear proteome using multiple proteomic analysis techniques. J Proteome Res 4, 2052–2061.

    Article  CAS  PubMed  Google Scholar 

  8. Ji C, Li L, Gebre M, Pasdar M, Li L. (2005) Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. J Proteome Res 4, 1419–1426.

    Article  CAS  PubMed  Google Scholar 

  9. Ji C, Li L, Gebre M, Pasdar M, Li L. (2005) Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. [Erratum to document cited in CA143:169101]. J Proteome Res 4, 1872.

    Article  CAS  Google Scholar 

  10. Ji C, Li L. (2005) Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS. J Proteome Res 4, 734–742.

    Article  CAS  PubMed  Google Scholar 

  11. Hattan SJ, Marchese J, Khainovski N, Martin S, Juhasz P. (2005) Comparative study of [Three] LC-MALDI workflows for the analysis of complex proteomic samples. J Proteome Res 4, 1931–1941.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang N, Li N, Li L. (2004) Liquid chromatography MALDI MS/MS for membrane proteome analysis. J Proteome Res 3, 719–727.

    Article  CAS  PubMed  Google Scholar 

  13. Li N, Shaw ARE, Zhang N, Mak A, Li L. (2004) Lipid raft proteomics: Analysis of in-solution digest of sodium dodecyl sulfate-solubilized lipid raft proteins by liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry. Proteomics 4, 3156–3166.

    Article  CAS  PubMed  Google Scholar 

  14. Bodnar WM, Blackburn RK, Krise JM, Moseley MA. (2003) Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for increased proteome coverage. J Am Soc Mass Spectrom 14, 971–979.

    Article  CAS  PubMed  Google Scholar 

  15. Ji C, Guo N, Li L. (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4, 2099–2108.

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Wang APL, Coulson LD. (1993) Continuous-flow matrix-assisted laser desorption ionization mass-spectrometry. Anal Chem 65, 493–495.

    Article  CAS  Google Scholar 

  17. Nagra DS, Li L. (1995) Liquid Chromatography-Time-Of-Flight Mass-Spectrometry With Continuous-Flow Matrix Assisted Laser-Desorption Ionization. J Chromatogr A 711, 235–245.

    Article  CAS  Google Scholar 

  18. Whittal RM, Russon LM, Li L. (1998) Development of liquid chromatography mass spectrometry using continuous-flow matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr A 794, 367–375.

    Article  CAS  Google Scholar 

  19. He L, Liang L, Lubman DM. (1995) Continuous-flow maldi mass-spectrometry using an ion-trap reflection time-of-flight detector. Anal Chem 67, 4127–4132.

    Article  CAS  Google Scholar 

  20. Chang SY, Yeung ES. (1997) Laser vaporization/ionization interface for capillary electrophoresis time-of-flight mass spectrometry. Anal Chem 69, 2251–2257.

    Article  CAS  Google Scholar 

  21. Murray KK, Russell DH. (1993) Liquid sample introduction for matrix-assisted laser-desorption ionization. Anal Chem 65, 2534–2537.

    Article  CAS  Google Scholar 

  22. Fei X, Wei G, Murray KK. (1996) Aerosol MALDI with a reflectron time-of-flight mass spectrometer. Anal Chem 68, 1143–1147.

    Article  CAS  Google Scholar 

  23. Murray KK. (1997) Coupling matrix-assisted laser desorption/ionization to liquid separations. Mass Spectrom Rev 16, 283–299.

    Article  CAS  Google Scholar 

  24. Orsnes H, Graf T, Degn H, Murray KK. (2000) A rotating ball inlet for on-line MALDI mass spectrometry. Anal Chem 72, 251–254.

    Article  CAS  PubMed  Google Scholar 

  25. Mukhopadhyay R. (2004) The automated union of LC and MALDI MS. Anal Chem 77, 150A–152A.

    Google Scholar 

  26. Zhang BY, McDonald C, Li L. (2004) Combining liquid chromatography with MALDI mass spectrometry using a heated droplet interface. Anal Chem 76, 992–1001.

    Article  CAS  PubMed  Google Scholar 

  27. Wang N, MacKenzie L, De Souza AG, Zhong HY, Goss G, Li L. (2007) Proteome profile of cytosolic component of zebrafish liver generated by LC-ESI MS/MS combined with trypsin digestion and microwave-assisted acid hydrolysis. J Proteome Res 6, 263–272.

    Article  CAS  PubMed  Google Scholar 

  28. Zhong HY, Marcus SL, Li L. (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J Am Soc Mass Spectrom 16, 471–481.

    Article  CAS  PubMed  Google Scholar 

  29. Zhong HY, Zhang Y, Wen ZH, Li L. (2004) Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat Biotechnol 22, 1291–1296.

    Article  CAS  PubMed  Google Scholar 

  30. Young JB, Li L. (2006) An impulse-driven liquid-droplet deposition interface for combining LC with MALDI MS and MS/MS. J Am Soc Mass Spectrom 17, 325–334.

    Article  CAS  PubMed  Google Scholar 

  31. Sasha Englard SS. (1990) Guide to protein purification in Methods in Enzymology Series (Deutscher MP, ed), Academic press, San diego, CA, vol. 22, 285–300.

    Google Scholar 

  32. Blonder J, Goshe MB, Moore RJ, Pasa-Tolic L, Masselon CD, Lipton MS, Smith RD. (2002) Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res 1, 351–360.

    Article  CAS  PubMed  Google Scholar 

  33. Russell WK, Park ZY, Russell DH. (2001) Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry. Anal Chem 73, 2682–2685.

    Article  CAS  PubMed  Google Scholar 

  34. Simon LM, Kotorman M, Garab G, Laczko I. (2001) Structure and activity of alpha-chymotrypsin and trypsin in aqueous organic media. Biochem Bioph Res Co 280, 1367–1371.

    Article  CAS  Google Scholar 

  35. Han DK, Eng J, Zhou HL, Aebersold R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19, 946–951.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, N., Young, J.B., Li, L. (2009). Liquid Chromatography MALDI MS/MS for Membrane Proteome Analysis. In: Peirce, M.J., Wait, R. (eds) Membrane Proteomics. Methods in Molecular Biology™, vol 528. Humana Press. https://doi.org/10.1007/978-1-60327-310-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-310-7_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-309-1

  • Online ISBN: 978-1-60327-310-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics