Skip to main content

Metalloproteases and the Degradome

  • Protocol
  • First Online:
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 622))

Abstract

Metalloproteases comprise a heterogeneous group of proteolytic enzymes whose main characteristic is the utilization of a metal ion to polarize a water molecule and perform hydrolytic reactions. These enzymes represent the most densely populated catalytic class of proteases in many organisms and play essential roles in multiple biological processes. In this chapter, we will first present a general description of the complexity of metalloproteases in the context of the degradome, which is defined as the complete set of protease genes encoded by the genome of a certain organism. We will also discuss the functional relevance of these enzymes in a large variety of biological and pathological conditions. Finally, we will analyze in more detail three families of metalloproteases: ADAMs (a disintegrin and metalloproteinase), ADAMTSs (ADAMs with thrombospondin domains), and MMPs (matrix metalloproteinases) which have a growing relevance in a number of human pathologies including cancer, arthritis, neurodegenerative disorders, and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Otin, C. and Overall, C. M. (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3, 509–519.

    Article  PubMed  CAS  Google Scholar 

  2. Puente, X. S., Sanchez, L. M., Overall, C. M., and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4, 544–558.

    Article  PubMed  CAS  Google Scholar 

  3. Puente, X. S., Gutierrez-Fernandez, A., Ordonez, G. R., Hillier, L. W., and Lopez-Otin, C. (2005) Comparative genomic analysis of human and chimpanzee proteases. Genomics 86, 638–647.

    Article  PubMed  CAS  Google Scholar 

  4. Ordoñez, G. R., Hillier, L. W., Warren, W. C., Grützner, F., Lopez-Otin, C., and Puente, X. S. (2008) Loss of genes implicated in gastric function during platypus evolution. Genome Biol 9, R81.

    Google Scholar 

  5. Shah, P. K., Tripathi, L. P., Jensen, L. J., Gahnim, M., Mason, C., Furlong, E. E., Rodrigues, V., White, K. P., Bork, P., and Sowdhamini, R. (2008) Enhanced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families. Gene 407, 199–215.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia-Lorenzo, M., Sjodin, A., Jansson, S., and Funk, C. (2006) Protease gene families in Populus and Arabidopsis. BMC Plant Biol 6, 30.

    Article  PubMed  CAS  Google Scholar 

  7. Kinch, L. N., Ginalski, K., and Grishin, N. V. (2006) Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade. Protein Sci 15, 84–93.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, M. S. and Goldstein, J. L. (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96, 11041–11048.

    Article  PubMed  CAS  Google Scholar 

  9. Rawlings, N. D. and Barrett, A. J. (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248, 183–228.

    Article  PubMed  CAS  Google Scholar 

  10. Reznik, S. E. and Fricker, L. D. (2001) Carboxypeptidases from A to z: implications in embryonic development and Wnt binding. Cell Mol Life Sci 58, 1790–1804.

    Article  PubMed  CAS  Google Scholar 

  11. Arolas, J. L., Vendrell, J., Aviles, F. X., and Fricker, L. D. (2007) Metallocarboxypeptidases: emerging drug targets in biomedicine. Curr Pharm Des 13, 349–366.

    Article  PubMed  CAS  Google Scholar 

  12. Ambroggio, X. I., Rees, D. C., and Deshaies, R. J. (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2, E2.

    Article  PubMed  CAS  Google Scholar 

  13. Bochtler, M., Odintsov, S. G., Marcyjaniak, M., and Sabala, I. (2004) Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Protein Sci 13, 854–861.

    Article  PubMed  CAS  Google Scholar 

  14. Matsui, M., Fowler, J. H., and Walling, L. L. (2006) Leucine aminopeptidases: diversity in structure and function. Biol Chem 387, 1535–1544.

    Article  PubMed  CAS  Google Scholar 

  15. Holz, R. C., Bzymek, K. P., and Swierczek, S. I. (2003) Co-catalytic metallopeptidases as pharmaceutical targets. Curr Opin Chem Biol 7, 197–206.

    Article  PubMed  CAS  Google Scholar 

  16. Leopoldini, M., Russo, N., and Toscano, M. (2007) Which one among Zn(II), Co(II), Mn(II), and Fe(II) is the most efficient ion for the methionine aminopeptidase catalyzed reaction? J Am Chem Soc 129, 7776–7784.

    Article  PubMed  CAS  Google Scholar 

  17. Fushimi, N., Ee, C. E., Nakajima, T., and Ichishima, E. (1999) Aspzincin, a family of metalloendopeptidases with a new zinc-binding motif. Identification of new zinc-binding sites (His(128), His(132), and Asp(164)) and three catalytically crucial residues (Glu(129), Asp(143), and Tyr(106)) of deuterolysin from Aspergillus oryzae by site-directed mutagenesis. J Biol Chem 274, 24195–24201.

    Article  PubMed  CAS  Google Scholar 

  18. Bode, W., Gomis-Ruth, F. X., and Stockler, W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331, 134–140.

    Article  PubMed  CAS  Google Scholar 

  19. Hooper, N. M. (1994) Families of zinc metalloproteases. FEBS Lett 354, 1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Gomis-Ruth, F. X. (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24, 157–202.

    Article  PubMed  CAS  Google Scholar 

  21. Albiston, A. L., Ye, S., and Chai, S. Y. (2004) Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept Lett 11, 491–500.

    Article  PubMed  CAS  Google Scholar 

  22. Danilczyk, U., Eriksson, U., Crackower, M. A., and Penninger, J. M. (2003) A story of two ACEs. J Mol Med 81, 227–234.

    PubMed  CAS  Google Scholar 

  23. Lim, E. J., Sampath, S., Coll-Rodriguez, J., Schmidt, J., Ray, K., and Rodgers, D. W. (2007) Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase. J Biol Chem 282, 9722–9732.

    Article  PubMed  CAS  Google Scholar 

  24. Chew, A., Buck, E. A., Peretz, S., Sirugo, G., Rinaldo, P., and Isaya, G. (1997) Cloning, expression, and chromosomal assignment of the human mitochondrial intermediate peptidase gene (MIPEP). Genomics 40, 493–496.

    Article  PubMed  CAS  Google Scholar 

  25. Turner, A. J., Isaac, R. E., and Coates, D. (2001) The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23, 261–269.

    Article  PubMed  CAS  Google Scholar 

  26. Koppen, M. and Langer, T. (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42, 221–242.

    Article  PubMed  CAS  Google Scholar 

  27. Pendas, A. M., Zhou, Z., Cadinanos, J., Freije, J. M., Wang, J., Hultenby, K., Astudillo, A., Wernerson, A., Rodriguez, F., Tryggvason, K., and Lopez-Otin, C. (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31, 94–99.

    PubMed  CAS  Google Scholar 

  28. Navarro, C. L., Cadinanos, J., De Sandre-Giovannoli, A., Bernard, R., Courrier, S., Boccaccio, I., Boyer, A., Kleijer, W. J., Wagner, A., Giuliano, F., Beemer, F. A., Freije, J. M., Cau, P., Hennekam, R. C., Lopez-Otin, C., Badens, C., and Levy, N. (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum Mol Genet 14, 1503–1513.

    Article  PubMed  CAS  Google Scholar 

  29. Varela, I., Cadinanos, J., Pendas, A. M., Gutierrez-Fernandez, A., Folgueras, A. R., Sanchez, L. M., Zhou, Z., Rodriguez, F. J., Stewart, C. L., Vega, J. A., Tryggvason, K., Freije, J. M., and Lopez-Otin, C. (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–568.

    Article  PubMed  CAS  Google Scholar 

  30. Ramirez, C. L., Cadinanos, J., Varela, I., Freije, J. M., and Lopez-Otin, C. (2007) Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cell Mol Life Sci 64, 155–170.

    Article  PubMed  CAS  Google Scholar 

  31. Hase, C. C. and Finkelstein, R. A. (1993) Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 57, 823–837.

    PubMed  CAS  Google Scholar 

  32. Harrington, D. J. (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64, 1885–1891.

    PubMed  CAS  Google Scholar 

  33. Markaryan, A., Morozova, I., Yu, H., and Kolattukudy, P. E. (1994) Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun 62, 2149–2157.

    PubMed  CAS  Google Scholar 

  34. Jousson, O., Lechenne, B., Bontems, O., Capoccia, S., Mignon, B., Barblan, J., Quadroni, M., and Monod, M. (2004) Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology 150, 301–310.

    Article  PubMed  CAS  Google Scholar 

  35. Kosowska, K., Reinholdt, J., Rasmussen, L. K., Sabat, A., Potempa, J., Kilian, M., and Poulsen, K. (2002) The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidase. J Biol Chem 277, 11987–11994.

    Article  PubMed  CAS  Google Scholar 

  36. Stocker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Ruth, F. X., McKay, D. B., and Bode, W. (1995) The metzincins – topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4, 823–840.

    Article  PubMed  CAS  Google Scholar 

  37. Diaz-Perales, A., Quesada, V., Peinado, J. R., Ugalde, A. P., Alvarez, J., Suarez, M. F., Gomis-Ruth, F. X., and Lopez-Otin, C. (2005) Identification and characterization of human archaemetzincin-1 and -2, two novel members of a family of metalloproteases widely distributed in Archaea. J Biol Chem 280, 30367–30375.

    Article  PubMed  CAS  Google Scholar 

  38. Quesada, V., Sanchez, L. M., Alvarez, J., and Lopez-Otin, C. (2004) Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians, and fish. J Biol Chem 279, 26627–26634.

    Article  PubMed  CAS  Google Scholar 

  39. Bond, J. S. and Beynon, R. J. (1995) The astacin family of metalloendopeptidases. Protein Sci 4, 1247–1261.

    Article  PubMed  CAS  Google Scholar 

  40. Hopkins, D. R., Keles, S., and Greenspan, D. S. (2007) The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biol 26, 508–523.

    Article  PubMed  CAS  Google Scholar 

  41. Angerer, L., Hussain, S., Wei, Z., and Livingston, B. T. (2006) Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. Dev Biol 300, 267–281.

    Article  PubMed  CAS  Google Scholar 

  42. McCoy, A. J., Liu, H., Falla, T. J., and Gunn, J. S. (2001) Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob Agents Chemother 45, 2030–2037.

    Article  PubMed  CAS  Google Scholar 

  43. Kida, Y., Inoue, H., Shimizu, T., and Kuwano, K. (2007) Serratia marcescens serralysin induces inflammatory responses through protease-activated receptor 2. Infect Immun 75, 164–174.

    Article  PubMed  CAS  Google Scholar 

  44. Driscoll, J. A., Brody, S. L., and Kollef, M. H. (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67, 351–368.

    Article  PubMed  CAS  Google Scholar 

  45. Matheson, N. R., Potempa, J., and Travis, J. (2006) Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8. Biol Chem 387, 911–915.

    Article  PubMed  CAS  Google Scholar 

  46. Grandvalet, C., Gominet, M., and Lereclus, D. (2001) Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology 147, 1805–1813.

    PubMed  CAS  Google Scholar 

  47. Gelb, M. H. and Hol, W. G. (2002) Parasitology. Drugs to combat tropical protozoan parasites. Science 297, 343–344.

    Article  PubMed  CAS  Google Scholar 

  48. Grandgenett, P. M., Otsu, K., Wilson, H. R., Wilson, M. E., and Donelson, J. E. (2007) A function for a specific zinc metalloprotease of African trypanosomes. PLoS Pathog 3, 1432–1445.

    Article  PubMed  CAS  Google Scholar 

  49. Yao, C., Donelson, J. E., and Wilson, M. E. (2003) The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132, 1–16.

    Article  PubMed  CAS  Google Scholar 

  50. McHugh, B., Krause, S. A., Yu, B., Deans, A. M., Heasman, S., McLaughlin, P., and Heck, M. M. (2004) Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. J Cell Biol 167, 673–686.

    Article  PubMed  CAS  Google Scholar 

  51. Ramos, O. H. and Selistre-de-Araujo, H. S. (2006) Snake venom metalloproteases – structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol 142, 328–346.

    Article  PubMed  CAS  Google Scholar 

  52. Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, A. B., Su, J. L., Lambert, M. H., Willard, D. H., Sheeley, D. M., Kost, T. A., Burkhart, W., Moyer, M., Blackburn, R. K., Pahel, G. L., Mitchell, J. L., Hoffman, C. R., and Becherer, J. D. (1999) Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J Biol Chem 274, 30563–30570.

    Article  PubMed  CAS  Google Scholar 

  53. Hougaard, S., Loechel, F., Xu, X., Tajima, R., Albrechtsen, R., and Wewer, U. M. (2000) Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem Biophys Res Commun 275, 261–267.

    Article  PubMed  CAS  Google Scholar 

  54. Puente, X. S. and Lopez-Otin, C. (2004) A genomic analysis of rat proteases and protease inhibitors. Genome Res 14, 609–622.

    Article  PubMed  CAS  Google Scholar 

  55. Sagane, K., Yamazaki, K., Mizui, Y., and Tanaka, I. (1999) Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23. Gene 236, 79–86.

    Article  PubMed  CAS  Google Scholar 

  56. Seals, D. F. and Courtneidge, S. A. (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17, 7–30.

    Article  PubMed  CAS  Google Scholar 

  57. Zheng, Y., Saftig, P., Hartmann, D., and Blobel, C. (2004) Evaluation of the contribution of different ADAMs to tumor necrosis factor alpha (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17). J Biol Chem 279, 42898–42906.

    Article  PubMed  CAS  Google Scholar 

  58. Kurisaki, T., Masuda, A., Sudo, K., Sakagami, J., Higashiyama, S., Matsuda, Y., Nagabukuro, A., Tsuji, A., Nabeshima, Y., Asano, M., Iwakura, Y., and Sehara-Fujisawa, A. (2003) Phenotypic analysis of Meltrin alpha (ADAM12)-deficient mice: involvement of Meltrin alpha in adipogenesis and myogenesis. Mol Cell Biol 23, 55–61.

    Article  PubMed  CAS  Google Scholar 

  59. Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Karkkainen, I., and Ortiz, R. M. (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30, 413–422.

    Article  PubMed  CAS  Google Scholar 

  60. Loechel, F., Fox, J. W., Murphy, G., Albrechtsen, R., and Wewer, U. M. (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278, 511–515.

    Article  PubMed  CAS  Google Scholar 

  61. Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K., and Saftig, P. (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11, 2615–2624.

    Article  PubMed  CAS  Google Scholar 

  62. Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., Proksch, E., de Strooper, B., Hartmann, D., and Saftig, P. (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102, 9182–9187.

    Article  PubMed  CAS  Google Scholar 

  63. Beck, V., Herold, H., Benge, A., Luber, B., Hutzler, P., Tschesche, H., Kessler, H., Schmitt, M., Geppert, H. G., and Reuning, U. (2005) ADAM15 decreases integrin alphavbeta3/vitronectin-mediated ovarian cancer cell adhesion and motility in an RGD-dependent fashion. Int J Biochem Cell Biol 37, 590–603.

    Article  PubMed  CAS  Google Scholar 

  64. Nishimura, H., Myles, D. G., and Primakoff, P. (2007) Identification of an ADAM2-ADAM3 complex on the surface of mouse testicular germ cells and cauda epididymal sperm. J Biol Chem 282, 17900–17907.

    Article  PubMed  CAS  Google Scholar 

  65. Cal, S., Freije, J. M., Lopez, J. M., Takada, Y., and Lopez-Otin, C. (2000) ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol Biol Cell 11, 1457–1469.

    PubMed  CAS  Google Scholar 

  66. Ohtsu, H., Dempsey, P. J., and Eguchi, S. (2006) ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol 291, C1–C10.

    Article  PubMed  CAS  Google Scholar 

  67. Rocks, N., Paulissen, G., El Hour, M., Quesada, F., Crahay, C., Gueders, M., Foidart, J. M., Noel, A., and Cataldo, D. (2007) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90(2), 369–379.

    Article  PubMed  CAS  Google Scholar 

  68. Llamazares, M., Cal, S., Quesada, V., and Lopez-Otin, C. (2003) Identification and characterization of ADAMTS-20 defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and a unique GON domain. J Biol Chem 278, 13382–13389.

    Article  PubMed  CAS  Google Scholar 

  69. Cal, S., Obaya, A. J., Llamazares, M., Garabaya, C., Quesada, V., and Lopez-Otin, C. (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283, 49–62.

    Article  PubMed  CAS  Google Scholar 

  70. Porter, S., Clark, I. M., Kevorkian, L., and Edwards, D. R. (2005) The ADAMTS metalloproteinases. Biochem J 386, 15–27.

    Article  PubMed  CAS  Google Scholar 

  71. Hashimoto, G., Shimoda, M., and Okada, Y. (2004) ADAMTS4 (aggrecanase-1) interaction with the C-terminal domain of fibronectin inhibits proteolysis of aggrecan. J Biol Chem 279, 32483–32491.

    Article  PubMed  CAS  Google Scholar 

  72. Little, C. B., Meeker, C. T., Golub, S. B., Lawlor, K. E., Farmer, P. J., Smith, S. M., and Fosang, A. J. (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117, 1627–1636.

    Article  PubMed  CAS  Google Scholar 

  73. Colige, A., Nuytinck, L., Hausser, I., van Essen, A. J., Thiry, M., Herens, C., Ades, L. C., Malfait, F., Paepe, A. D., Franck, P., Wolff, G., Oosterwijk, J. C., Smitt, J. H., Lapiere, C. M., and Nusgens, B. V. (2004) Novel types of mutation responsible for the dermatosparactic type of Ehlers-Danlos syndrome (Type VIIC) and common polymorphisms in the ADAMTS2 gene. J Invest Dermatol 123, 656–663.

    Article  PubMed  CAS  Google Scholar 

  74. Dagoneau, N., Benoist-Lasselin, C., Huber, C., Faivre, L., Megarbane, A., Alswaid, A., Dollfus, H., Alembik, Y., Munnich, A., Legeai-Mallet, L., and Cormier-Daire, V. (2004) ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome. Am J Hum Genet 75, 801–806.

    Article  PubMed  CAS  Google Scholar 

  75. Rao, C., Foernzler, D., Loftus, S. K., Liu, S., McPherson, J. D., Jungers, K. A., Apte, S. S., Pavan, W. J., and Beier, D. R. (2003) A defect in a novel ADAMTS family member is the cause of the belted white-spotting mutation. Development 130, 4665–4672.

    Article  PubMed  CAS  Google Scholar 

  76. Jungers, K. A., Le Goff, C., Somerville, R. P., and Apte, S. S. (2005) Adamts9 is widely expressed during mouse embryo development. Gene Expr Patterns 5, 609–617.

    Article  PubMed  CAS  Google Scholar 

  77. Levy, G. G., Nichols, W. C., Lian, E. C., Foroud, T., McClintick, J. N., McGee, B. M., Yang, A. Y., Siemieniak, D. R., Stark, K. R., Gruppo, R., Sarode, R., Shurin, S. B., Chandrasekaran, V., Stabler, S. P., Sabio, H., Bouhassira, E. E., Upshaw, J. D., Jr., Ginsburg, D., and Tsai, H. M. (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488–494.

    Article  PubMed  CAS  Google Scholar 

  78. Luque, A., Carpizo, D. R., and Iruela-Arispe, M. L. (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 278, 23656–23665.

    Article  PubMed  CAS  Google Scholar 

  79. Llamazares, M., Obaya, A. J., Moncada-Pazos, A., Heljasvaara, R., Espada, J., Lopez-Otin, C., and Cal, S. (2007) The ADAMTS12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci 120, 3544–3552.

    Article  PubMed  CAS  Google Scholar 

  80. Lopez-Otin, C. and Matrisian, L. M. (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7, 800–808.

    Article  PubMed  CAS  Google Scholar 

  81. Folgueras, A. R., Pendas, A. M., Sanchez, L. M., and Lopez-Otin, C. (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48, 411–424.

    Article  PubMed  CAS  Google Scholar 

  82. Overall, C. M. and Lopez-Otin, C. (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2, 657–672.

    Article  PubMed  CAS  Google Scholar 

  83. Clark, I. M., Swingler, T. E., Sampieri, C. L., and Edwards, D. R. (2007) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40(6–7), 1362–1378.

    PubMed  Google Scholar 

  84. Pei, D. and Weiss, S. J. (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.

    Article  PubMed  CAS  Google Scholar 

  85. Kinoshita, T., Sato, H., Takino, T., Itoh, M., Akizawa, T., and Seiki, M. (1996) Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res 56, 2535–2538.

    PubMed  CAS  Google Scholar 

  86. Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R. M., Nishimura, S., Imamura, Y., Kitayama, H., Alexander, D. B., Ide, C., Horan, T. P., Arakawa, T., Yoshida, H., Nishikawa, S., Itoh, Y., Seiki, M., Itohara, S., Takahashi, C., and Noda, M. (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800.

    Article  PubMed  CAS  Google Scholar 

  87. Herman, M. P., Sukhova, G. K., Kisiel, W., Foster, D., Kehry, M. R., Libby, P., and Schonbeck, U. (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 107, 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  88. Mott, J. D., Thomas, C. L., Rosenbach, M. T., Takahara, K., Greenspan, D. S., and Banda, M. J. (2000) Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J Biol Chem 275, 1384–1390.

    Article  PubMed  CAS  Google Scholar 

  89. McCawley, L. J. and Matrisian, L. M. (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13, 534–540.

    Article  PubMed  CAS  Google Scholar 

  90. Schonbeck, U., Mach, F., and Libby, P. (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 161, 3340–3346.

    PubMed  CAS  Google Scholar 

  91. Van Lint, P. and Libert, C. (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375–1381.

    Article  PubMed  CAS  Google Scholar 

  92. Sheu, B. C., Hsu, S. M., Ho, H. N., Lien, H. C., Huang, S. C., and Lin, R. H. (2001) A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61, 237–242.

    PubMed  CAS  Google Scholar 

  93. Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M. D., and Okada, Y. (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322 (Pt 3), 809–814.

    PubMed  CAS  Google Scholar 

  94. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V., and Underwood, P. A. (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271, 10079–10086.

    Article  PubMed  CAS  Google Scholar 

  95. Nakamura, M., Miyamoto, S., Maeda, H., Ishii, G., Hasebe, T., Chiba, T., Asaka, M., and Ochiai, A. (2005) Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability. Biochem Biophys Res Commun 333, 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  96. Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y., and Shinomura, Y. (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231, 20–27.

    CAS  Google Scholar 

  97. Papagerakis, P., Lin, H. K., Lee, K. Y., Hu, Y., Simmer, J. P., Bartlett, J. D., and Hu, J. C. (2008) Premature stop codon in MMP20 causing amelogenesis imperfecta. J Dent Res 87, 56–59.

    Article  PubMed  CAS  Google Scholar 

  98. Kennedy, A. M., Inada, M., Krane, S. M., Christie, P. T., Harding, B., Lopez-Otin, C., Sanchez, L. M., Pannett, A. A., Dearlove, A., Hartley, C., Byrne, M. H., Reed, A. A., Nesbit, M. A., Whyte, M. P., and Thakker, R. V. (2005) MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO)). J Clin Invest 115, 2832–2842.

    Article  PubMed  CAS  Google Scholar 

  99. Martignetti, J. A., Aqeel, A. A., Sewairi, W. A., Boumah, C. E., Kambouris, M., Mayouf, S. A., Sheth, K. V., Eid, W. A., Dowling, O., Harris, J., Glucksman, M. J., Bahabri, S., Meyer, B. F., and Desnick, R. J. (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28, 261–265.

    Article  PubMed  CAS  Google Scholar 

  100. Wu, E., Mari, B. P., Wang, F., Anderson, I. C., Sunday, M. E., and Shipp, M. A. (2001) Stromelysin-3 suppresses tumor cell apoptosis in a murine model. J Cell Biochem 82, 549–555.

    Article  PubMed  CAS  Google Scholar 

  101. Boulay, A., Masson, R., Chenard, M. P., El Fahime, M., Cassard, L., Bellocq, J. P., Sautes-Fridman, C., Basset, P., and Rio, M. C. (2001) High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 61, 2189–2193.

    PubMed  CAS  Google Scholar 

  102. Noel, A., Jost, M., and Maquoi, E. (2008) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 19, 52–60.

    Article  PubMed  CAS  Google Scholar 

  103. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., and Hanahan, D. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2, 737–744.

    Article  PubMed  CAS  Google Scholar 

  104. Hiraoka, N., Allen, E., Apel, I. J., Gyetko, M. R., and Weiss, S. J. (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377.

    Article  PubMed  CAS  Google Scholar 

  105. Koshikawa, N., Giannelli, G., Cirulli, V., Miyazaki, K., and Quaranta, V. (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148, 615–624.

    Article  PubMed  CAS  Google Scholar 

  106. Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., and Uehira, M. (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17, 177–181.

    Article  PubMed  CAS  Google Scholar 

  107. Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., Nadal, C., Gomis, R. R., Manova-Todorova, K., and Massague, J. (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770.

    Article  PubMed  CAS  Google Scholar 

  108. Egeblad, M. and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174.

    Article  PubMed  CAS  Google Scholar 

  109. Balbin, M., Fueyo, A., Tester, A. M., Pendas, A. M., Pitiot, A. S., Astudillo, A., Overall, C. M., Shapiro, S. D., and Lopez-Otin, C. (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35, 252–257.

    Article  PubMed  CAS  Google Scholar 

  110. Savinov, A. Y., Remacle, A. G., Golubkov, V. S., Krajewska, M., Kennedy, S., Duffy, M. J., Rozanov, D. V., Krajewski, S., and Strongin, A. Y. (2006) Matrix metalloproteinase 26 proteolysis of the NH2-terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients. Cancer Res 66, 2716–2724.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ugalde, A.P., Ordóñez, G.R., Quirós, P.M., Puente, X.S., López-Otín, C. (2010). Metalloproteases and the Degradome. In: Clark, I. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology, vol 622. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-299-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-299-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-298-8

  • Online ISBN: 978-1-60327-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics