Advertisement

Lentiviral and Adeno-Associated Vector-Based Therapy for Motor Neuron Disease Through RNAi

  • Chris Towne
  • Patrick Aebischer
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 555)

Abstract

RNAi holds promise for neurodegenerative disorders caused by gain-of-function mutations. We and others have demonstrated proof-of-principle for viral-mediated RNAi in a mouse model of motor neuron disease. Lentivirus and adeno-associated virus have been used to knockdown levels of mutated superoxide dismutase 1 (SOD1) in the G93A SOD1 mouse model of familial amyotrophic lateral sclerosis (fALS) to result in beneficial therapeutic outcomes. This chapter describes the design, production, and titration of lentivirus and adeno-associated virus capable of mediating SOD1 knockdown in vivo. The delivery of the virus to the spinal cord directly, through intraspinal injection, or indirectly, through intramuscular injection, is also described, as well as the methods pertaining to the analysis of spinal cord transduction, SOD1 silencing, and determination of motor neuron protection.

Key words

Amyotrophic lateral sclerosis superoxide dismutase (SOD1) lentivirus adeno-associated virus (AAV) RNA interference (RNAi) gene therapy G93A SOD1 

References

  1. 1.
    Bruijn, L.I., Miller, T.M. and Cleveland, D.W. (2004) Unravelling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749.PubMedCrossRefGoogle Scholar
  2. 2.
    Dykxhoorn, D.M., Novina, C.D. and Sharp, P.A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.PubMedCrossRefGoogle Scholar
  3. 3.
    Saito, Y., Yokota, T., Mitani, T., Ito, K., Anzai, M., Miyagishi, M., Taira, K. and Mizusawa, H. (2005) Transgenic small interfering RNA halts amyotrophics lateral sclerosis in a mouse model. J. Biol. Chem. 280, 42826–42830.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith, R.A., Miller, T.M., Yamanaka, K., Monia, B.P., Condon, T.P., Hung, G., Lobsiger, C.S., Ward, C.M., McAlonis-Downes, M., Wei, H., Wancewicz, E.V., Bennett, C.F. and Cleveland, D.W. (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296.PubMedCrossRefGoogle Scholar
  5. 5.
    Zamore, P.D., Tuschl, T., Sharp, P.A. and Bartel, D.P. (2000) RNAi: double stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Ralph, G.S., Radcliffe, P.A., Day, D.M., Carthy, J.M., Leroux, M.A., Lee, D.C., Wong, L.F., Bilsland, L.G., Greensmith, L., Kingsman, S.M., Mitrophanous, K.A., Mazarakis, N.D. and Azzouz, M. (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med, 11, 429–433.PubMedCrossRefGoogle Scholar
  7. 7.
    Raoul, C., Abbas-Terki, T., Bensadoun, J.C., Guillot, S., Haase, G., Szulc, J., Henderson, C.E. and Aebischer, P. (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 11, 423–428.PubMedCrossRefGoogle Scholar
  8. 8.
    Boillee, S., Vande Velde, C. and Cleveland, D.W. (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59.PubMedCrossRefGoogle Scholar
  9. 9.
    Miller, T.M., Kaspar, B.K., Kops, G.J., Yamanaka, K., Christian, L.J., Gage, F.H. and Cleveland, D.W. (2005) Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann. Neurol. 57, 773–776.PubMedCrossRefGoogle Scholar
  10. 10.
    Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.PubMedCrossRefGoogle Scholar
  11. 11.
    Saetrom, P. and Snove, O.J. (2004) A comparison of siRNA efficacy predictors. Biochem. Biophys. Res. Commun. 321, 247–253.PubMedCrossRefGoogle Scholar
  12. 12.
    Takasaki, S., Kotani, S. and Konagaya, A. (2004) An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle 3, 790–795.PubMedCrossRefGoogle Scholar
  13. 13.
    Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.PubMedCrossRefGoogle Scholar
  14. 14.
    Hsieh, A.C., Bo, R., Manola, J., Vazquez, F., Bare, O., Khvorova, A., Scaringe, S. and Sellers W.R. (2004) A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 32, 893–901.PubMedCrossRefGoogle Scholar
  15. 15.
    Amarzguioui, M. and Prydz, H. (2004) An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050–1058.PubMedCrossRefGoogle Scholar
  16. 16.
    Taxman, D.J., Livingstone, L.R., Zhang, J., Conti, B.J., Iocca, H.A., Williams, K.L., Lich, J.D., Ting, J.P. and Reed, W. (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 6, 7.PubMedCrossRefGoogle Scholar
  17. 17.
    Graham, F.L., Smiley, J., Russell, W.C. and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Grimm, D., Kay, M.A. and Kleinschmidt, J.A. (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol. Ther. 7, 839–850.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chris Towne
    • 1
  • Patrick Aebischer
    • 1
  1. 1.Brain Mind InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations