Skip to main content

Lentiviral and Adeno-Associated Vector-Based Therapy for Motor Neuron Disease Through RNAi

  • Protocol
  • First Online:
Therapeutic Applications of RNAi

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 555))

Abstract

RNAi holds promise for neurodegenerative disorders caused by gain-of-function mutations. We and others have demonstrated proof-of-principle for viral-mediated RNAi in a mouse model of motor neuron disease. Lentivirus and adeno-associated virus have been used to knockdown levels of mutated superoxide dismutase 1 (SOD1) in the G93A SOD1 mouse model of familial amyotrophic lateral sclerosis (fALS) to result in beneficial therapeutic outcomes. This chapter describes the design, production, and titration of lentivirus and adeno-associated virus capable of mediating SOD1 knockdown in vivo. The delivery of the virus to the spinal cord directly, through intraspinal injection, or indirectly, through intramuscular injection, is also described, as well as the methods pertaining to the analysis of spinal cord transduction, SOD1 silencing, and determination of motor neuron protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruijn, L.I., Miller, T.M. and Cleveland, D.W. (2004) Unravelling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749.

    Article  PubMed  CAS  Google Scholar 

  2. Dykxhoorn, D.M., Novina, C.D. and Sharp, P.A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.

    Article  PubMed  CAS  Google Scholar 

  3. Saito, Y., Yokota, T., Mitani, T., Ito, K., Anzai, M., Miyagishi, M., Taira, K. and Mizusawa, H. (2005) Transgenic small interfering RNA halts amyotrophics lateral sclerosis in a mouse model. J. Biol. Chem. 280, 42826–42830.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, R.A., Miller, T.M., Yamanaka, K., Monia, B.P., Condon, T.P., Hung, G., Lobsiger, C.S., Ward, C.M., McAlonis-Downes, M., Wei, H., Wancewicz, E.V., Bennett, C.F. and Cleveland, D.W. (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296.

    Article  PubMed  CAS  Google Scholar 

  5. Zamore, P.D., Tuschl, T., Sharp, P.A. and Bartel, D.P. (2000) RNAi: double stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  PubMed  CAS  Google Scholar 

  6. Ralph, G.S., Radcliffe, P.A., Day, D.M., Carthy, J.M., Leroux, M.A., Lee, D.C., Wong, L.F., Bilsland, L.G., Greensmith, L., Kingsman, S.M., Mitrophanous, K.A., Mazarakis, N.D. and Azzouz, M. (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med, 11, 429–433.

    Article  PubMed  CAS  Google Scholar 

  7. Raoul, C., Abbas-Terki, T., Bensadoun, J.C., Guillot, S., Haase, G., Szulc, J., Henderson, C.E. and Aebischer, P. (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 11, 423–428.

    Article  PubMed  CAS  Google Scholar 

  8. Boillee, S., Vande Velde, C. and Cleveland, D.W. (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59.

    Article  PubMed  CAS  Google Scholar 

  9. Miller, T.M., Kaspar, B.K., Kops, G.J., Yamanaka, K., Christian, L.J., Gage, F.H. and Cleveland, D.W. (2005) Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann. Neurol. 57, 773–776.

    Article  PubMed  CAS  Google Scholar 

  10. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.

    Article  PubMed  CAS  Google Scholar 

  11. Saetrom, P. and Snove, O.J. (2004) A comparison of siRNA efficacy predictors. Biochem. Biophys. Res. Commun. 321, 247–253.

    Article  PubMed  CAS  Google Scholar 

  12. Takasaki, S., Kotani, S. and Konagaya, A. (2004) An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle 3, 790–795.

    Article  PubMed  CAS  Google Scholar 

  13. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh, A.C., Bo, R., Manola, J., Vazquez, F., Bare, O., Khvorova, A., Scaringe, S. and Sellers W.R. (2004) A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 32, 893–901.

    Article  PubMed  CAS  Google Scholar 

  15. Amarzguioui, M. and Prydz, H. (2004) An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050–1058.

    Article  PubMed  CAS  Google Scholar 

  16. Taxman, D.J., Livingstone, L.R., Zhang, J., Conti, B.J., Iocca, H.A., Williams, K.L., Lich, J.D., Ting, J.P. and Reed, W. (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 6, 7.

    Article  PubMed  Google Scholar 

  17. Graham, F.L., Smiley, J., Russell, W.C. and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.

    Article  PubMed  CAS  Google Scholar 

  18. Grimm, D., Kay, M.A. and Kleinschmidt, J.A. (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol. Ther. 7, 839–850.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Towne, C., Aebischer, P. (2009). Lentiviral and Adeno-Associated Vector-Based Therapy for Motor Neuron Disease Through RNAi. In: Rondinone, C., Reidhaar-Olson, J. (eds) Therapeutic Applications of RNAi. Methods in Molecular Biology™, vol 555. Humana Press. https://doi.org/10.1007/978-1-60327-295-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-295-7_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-294-0

  • Online ISBN: 978-1-60327-295-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics