Advertisement

RNAi Using a Chitosan/siRNA Nanoparticle System: In Vitro and In Vivo Applications

  • Morten Østergaard Andersen
  • Kenneth Alan Howard
  • Jørgen Kjems
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 555)

Abstract

Delivery is a key issue in development of clinically relevant RNAi therapeutics. Polymeric nanoparticles formed by self-assembly of polycations with siRNA can be used for extracellular delivery, cellular uptake and intracellular trafficking as a strategy to improve the therapeutic potential of siRNA. This chapter describes a chitosan-based nanoparticle system for in vitro and in vivo transfection of siRNA into cells. The method exploits the mucoadhesive and mucopermeable properties of this cationic polysaccharide to deliver siRNA across mucosal epithelium and provides a platform for targeting human diseases with RNAi therapeutics.

Key words

siRNA Chitosan Nanoparticles Macrophages Nasal Delivery Intraperitoneal Delivery TNFα Freeze Drying 

References

  1. 1.
    Fire, A., et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  2. 2.
    Elbashir, S. M., et al. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  3. 3.
    Pouton, C. W. and Seymour, L. W. (2001) Key issues in non-viral gene delivery. Adv. Drug Deliv. Rev. 46, 187–203.PubMedCrossRefGoogle Scholar
  4. 4.
    Elouahabi, A. and Ruysschaert, J. M. (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 11, 336–347.PubMedCrossRefGoogle Scholar
  5. 5.
    Howard, K. A., et al. (2006). RNA Interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu, X., et al. (2007). The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28, 1280–1288.PubMedCrossRefGoogle Scholar
  7. 7.
    Soane, R. J., et al. (1999). Evaluation of the clearance characteristics of bioadhesive systems in humans. Int. J. Pharm. 178, 55–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Artursson, P., Lindmark, T., Davis, S. S. and Illum, L. (1994). Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11, 1358–1361.PubMedCrossRefGoogle Scholar
  9. 9.
    Feng, J., Zhao, L. and Yu, Q. (2004). Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem. Biophys. Res. Commun. 317, 414–420.PubMedCrossRefGoogle Scholar
  10. 10.
    Howard, K. A., et al. (2009). Knockdown in peritoneal macrophages as an anti-inflammatory treatement in a murine arthritic model. Mol. Ther. 17, 162–168.PubMedCrossRefGoogle Scholar
  11. 11.
    Andersen, M. O., et al. (2008). Delivery of siRNA from lyophilized polymeric surfaces. Biomaterials 29, 506–512.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Morten Østergaard Andersen
    • 1
  • Kenneth Alan Howard
    • 1
  • Jørgen Kjems
    • 1
  1. 1.Interdisciplinary Nanoscience Center (iNANO)Department of Molecular BiologyUniversity of AarhusDenmark

Personalised recommendations