Advertisement

Liposomal siRNA for Ovarian Cancer

  • Lingegowda S. Mangala
  • Hee Dong Han
  • Gabriel Lopez-Berestein
  • Anil K. Sood
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 555)

Abstract

Discovery of RNA interference (RNAi) has been one of the most important findings in the last ten years. In recent years, small interfering RNA (siRNA)-mediated gene silencing is beginning to show substantial promise as a new treatment modality in preclinical studies because of its robust gene selective silencing. However, until recently, delivery of siRNA in vivo was a major impediment to its use as a therapeutic modality. We have used a neutral liposome, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), for highly efficient in vivo siRNA delivery. Using siRNA tagged with Alexa-555, incorporated in DOPC liposomes, we have demonstrated efficient intra-tumoral delivery following either intraperitoneal or intravenous injection. Furthermore, EphA2-targeted siRNA in DOPC liposomes showed significant target modulation and anti-tumor efficacy.

Key words

RNA interference siRNA delivery neutral liposome DOPC ovarian carcinoma EphA2 

References

  1. 1.
    Elbashir, S. M., Lendeckel, W., Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200.PubMedCrossRefGoogle Scholar
  2. 2.
    Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.PubMedCrossRefGoogle Scholar
  3. 3.
    Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., Tuschi, T. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 15, 185–197.PubMedCrossRefGoogle Scholar
  4. 4.
    Okamura, K., Ishizuka, A., Siomi, H., Siomi, M. C. (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666.PubMedCrossRefGoogle Scholar
  5. 5.
    Wadhwa, R., Kaul, S. C., Miyagishi, M., Taira, K. (2004) Vectors for RNA interference. Curr. Opin. Mol. Ther. 6, 367–372.PubMedGoogle Scholar
  6. 6.
    Ryther, R. C., Flynt, A. S., Phillips, J. A., Patton, J. G. (2005) SiRNA therapeutics: big potential from small RNAs. Gene Ther. 12, 5–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, D., Peng, P., Dharap, S. S., Wang, Y., Mehlig, M., Chandna, P., et al. (2005) Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J. Control Rel. 110, 90–102.CrossRefGoogle Scholar
  8. 8.
    Fang, J., Sawa, T., Maeda, H. (2003) Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv. Exp. Med. Biol. 519, 29–49.PubMedCrossRefGoogle Scholar
  9. 9.
    Greish, K., Fang, J., Inutsuka, T., Nagamitsu, A., Maeda, H. (2003) Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumor targeting. Clin. Pharmacokinet. 42, 1089–1105.PubMedCrossRefGoogle Scholar
  10. 10.
    Maeda, H. (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsumura, Y. and Maeda, H. (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392.PubMedGoogle Scholar
  12. 12.
    Miller, C. R., Bondurant, B., McLean, S. D., McGovern, K. A., OʹBrien, D. F. (1998) Liposome–cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37, 12875–12883.PubMedCrossRefGoogle Scholar
  13. 13.
    Thaker, P. H., Deavers, M., Celestino, J., Thornton, A., Fletcher, M. S., Landen, C. N., et al. (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res. 10, 5145–5150.PubMedCrossRefGoogle Scholar
  14. 14.
    Landen, C. N., Kinch, M. S., Sood, A. K. (2005) EphA2 as a target for ovarian cancer therapy. Expert Opin. Ther. Targets 9, 51179–1187.CrossRefGoogle Scholar
  15. 15.
    Landen, C. N., Merritt, W. M., Mangala, L. S., Sanguino, A. M., Bucana, C., Lu, C., et al. (2006) Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol. Ther. 5, 1708–1713.PubMedCrossRefGoogle Scholar
  16. 16.
    Landen, C. N., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M. T., Lopez-Berestein, et al. (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918.PubMedCrossRefGoogle Scholar
  17. 17.
    Killion, J. J., Radinsky, R., Fidler, I. J. (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice.Cancer Metastasis Rev. 17, 279–284.PubMedCrossRefGoogle Scholar
  18. 18.
    Voskoglou-Nomikos, T., Pater, J. L., Seymour, L. (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models.Clin. Cancer Res. 9, 4227–4239.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lingegowda S. Mangala
    • 1
  • Hee Dong Han
    • 1
  • Gabriel Lopez-Berestein
    • 2
  • Anil K. Sood
    • 3
  1. 1.Department of Gynecologic OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Experimental TherapeuticsThe University of Texas M.D. Anderson Cancer CenterHoustonUSA
  3. 3.Departments of Gynecologic Oncology and Cancer BiologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations