Skip to main content

Live Imaging Mouse Embryonic Development: Seeing Is Believing and Revealing

  • Protocol
  • First Online:
Mouse Molecular Embryology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1092))

Abstract

The use of genetically encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and redefined our understanding of the dynamic morphogenetic processes that work to shape the embryo. Fluorescent proteins are routinely used as vital reporters to label tissues, cells, cellular organelles, or proteins of interest and in doing so provide contrasting agents enabling the acquisition of high-resolution quantitative image data. With the advent of more accessible and sophisticated imaging technologies and abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place in situ in living embryos can now be probed. Here, we provide an overview of some recent advances in this rapidly evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones EA, Baron MH, Fraser SE, Dickinson ME (2005) Dynamic in vivo imaging of mammalian hematovascular development using whole embryo culture. Methods Mol Med 105:381–394

    PubMed  Google Scholar 

  2. Jones EAV, Hadjantonakis A-K, Dickinson ME (2005) Imaging mouse embryonic development. In: Yuste R (ed) Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  3. Nowotschin S, Ferrer-Vaquer A, Hadjantonakis AK (2010) Imaging mouse development with confocal time-lapse microscopy. Methods Enzymol 476:351–377

    PubMed  Google Scholar 

  4. Udan RS, Dickinson ME (2010) Imaging mouse embryonic development. Methods Enzymol 476:329–349

    PubMed  Google Scholar 

  5. Dickinson ME (2006) Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn 235:2386–2400

    PubMed  Google Scholar 

  6. Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z, Wittbrodt J, Stelzer EH (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7:637–642

    PubMed  CAS  Google Scholar 

  7. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    PubMed  CAS  Google Scholar 

  8. Wessels D, Kuhl S, Soll DR (2006) Application of 2D and 3D DIAS to motion analysis of live cells in transmission and confocal microscopy imaging. Methods Mol Biol 346:261–279

    PubMed  Google Scholar 

  9. Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH (2006) Automated cell lineage tracing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 103:2707–2712

    PubMed  CAS  Google Scholar 

  10. Santella A, Du Z, Nowotschin S, Hadjantonakis AK, Bao Z (2010) A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics 11:580

    PubMed  Google Scholar 

  11. Quesada-Hernandez E, Caneparo L, Schneider S, Winkler S, Liebling M, Fraser SE, Heisenberg CP (2010) Stereotypical cell division orientation controls neural rod midline formation in zebrafish. Curr Biol 20:1966–1972

    PubMed  CAS  Google Scholar 

  12. Bhattacharyya S, Kulesa PM, Fraser SE (2008) Vital labeling of embryonic cells using fluorescent dyes and proteins. Methods Cell Biol 87:187–210

    PubMed  CAS  Google Scholar 

  13. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    PubMed  CAS  Google Scholar 

  14. Slotkin JR, Chakrabarti L, Dai HN, Carney RS, Hirata T, Bregman BS, Gallicano GI, Corbin JG, Haydar TF (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236:3393–3401

    PubMed  CAS  Google Scholar 

  15. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    PubMed  CAS  Google Scholar 

  16. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    PubMed  CAS  Google Scholar 

  17. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    PubMed  CAS  Google Scholar 

  18. Bokman SH, Ward WW (1981) Renaturation of Aequorea gree-fluorescent protein. Biochem Biophys Res Commun 101:1372–1380

    PubMed  CAS  Google Scholar 

  19. Ward WW, Bokman SH (1982) Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21:4535–4540

    PubMed  CAS  Google Scholar 

  20. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    PubMed  CAS  Google Scholar 

  21. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    PubMed  CAS  Google Scholar 

  22. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    PubMed  CAS  Google Scholar 

  23. Subach OM, Gundorov IS, Yoshimura M, Subach FV, Zhang J, Gruenwald D, Souslova EA, Chudakov DM, Verkhusha VV (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15:1116–1124

    PubMed  CAS  Google Scholar 

  24. Ai HW, Olenych SG, Wong P, Davidson MW, Campbell RE (2008) Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol 6:13

    PubMed  Google Scholar 

  25. Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A (2003) A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278:34167–34171

    PubMed  CAS  Google Scholar 

  26. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    PubMed  CAS  Google Scholar 

  27. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    PubMed  CAS  Google Scholar 

  28. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    PubMed  CAS  Google Scholar 

  29. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    PubMed  CAS  Google Scholar 

  30. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    PubMed  CAS  Google Scholar 

  31. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    PubMed  CAS  Google Scholar 

  32. Long JZ, Lackan CS, Hadjantonakis AK (2005) Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol 5:20

    PubMed  Google Scholar 

  33. Viotti M, Nowotschin S, Hadjantonakis A-K (2011) Afp::mCherry, a red fluorescent transgenic reporter of the mouse visceral endoderm. Genesis 49:124–133

    PubMed  CAS  Google Scholar 

  34. Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    PubMed  CAS  Google Scholar 

  35. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    PubMed  CAS  Google Scholar 

  36. Yu D, Baird GS, Tsien RY, Davis RL (2003) Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci 23:64–72

    PubMed  Google Scholar 

  37. Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997

    PubMed  Google Scholar 

  38. Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaout R, Scott I, Beis D, Xiao T, Baier H, Jan LY, Tristani-Firouzi M, Stainier DY (2008) Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol 6:e109

    PubMed  Google Scholar 

  39. Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3:e1796

    PubMed  Google Scholar 

  40. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    PubMed  CAS  Google Scholar 

  41. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882

    PubMed  CAS  Google Scholar 

  42. Fink D, Wohrer S, Pfeffer M, Tombe T, Ong CJ, Sorensen PH (2010) Ubiquitous expression of the monomeric red fluorescent protein mcherry in transgenic mice. Genesis 48:723–729

    PubMed  CAS  Google Scholar 

  43. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    PubMed  CAS  Google Scholar 

  44. Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312

    PubMed  CAS  Google Scholar 

  45. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498

    PubMed  CAS  Google Scholar 

  46. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    PubMed  CAS  Google Scholar 

  47. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557

    PubMed  CAS  Google Scholar 

  48. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    PubMed  CAS  Google Scholar 

  49. Kredel S, Oswald F, Nienhaus K, Deuschle K, Rocker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4:e4391

    PubMed  Google Scholar 

  50. Egli D, Rosains J, Birkhoff G, Eggan K (2007) Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447:679–685

    PubMed  CAS  Google Scholar 

  51. Provost E, Rhee J, Leach SD (2007) Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis 45:625–629

    PubMed  CAS  Google Scholar 

  52. Nowotschin S, Eakin GS, Hadjantonakis AK (2009) Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 47:330–336

    PubMed  CAS  Google Scholar 

  53. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101:16745–16749

    PubMed  CAS  Google Scholar 

  54. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746

    PubMed  CAS  Google Scholar 

  55. Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    PubMed  CAS  Google Scholar 

  56. Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179

    PubMed  CAS  Google Scholar 

  57. Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, Gorodnicheva TV, Strukova L, Shidlovskiy KM, Britanova OV, Zaraisky AG, Lukyanov KA, Loschenov VB, Luker GD, Chudakov DM (2010) Near-infrared fluorescent proteins. Nat Methods 7:827–829

    PubMed  CAS  Google Scholar 

  58. Nowotschin S, Hadjantonakis AK (2009) Photomodulatable fluorescent proteins for imaging cell dynamics and cell fate. Organogenesis 5:217–226

    PubMed  Google Scholar 

  59. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    PubMed  CAS  Google Scholar 

  60. Verkhusha VV, Sorkin A (2005) Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12:279–285

    PubMed  CAS  Google Scholar 

  61. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    PubMed  CAS  Google Scholar 

  62. Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194

    PubMed  CAS  Google Scholar 

  63. Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci U S A 102:9511–9516

    PubMed  CAS  Google Scholar 

  64. Habuchi S, Dedecker P, Hotta J, Flors C, Ando R, Mizuno H, Miyawaki A, Hofkens J (2006) Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci 5:567–576

    PubMed  CAS  Google Scholar 

  65. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882

    PubMed  CAS  Google Scholar 

  66. Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278:7215–7219

    PubMed  CAS  Google Scholar 

  67. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    PubMed  CAS  Google Scholar 

  68. Chudakov DM, Chepurnykh TV, Belousov VV, Lukyanov S, Lukyanov KA (2006) Fast and precise protein tracking using repeated reversible photoactivation. Traffic 7:1304–1310

    PubMed  CAS  Google Scholar 

  69. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–17569

    PubMed  CAS  Google Scholar 

  70. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032

    PubMed  CAS  Google Scholar 

  71. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22:1435–1439

    PubMed  CAS  Google Scholar 

  72. Stark DA, Kulesa PM (2007) An in vivo comparison of photoactivatable fluorescent proteins in an avian embryo model. Dev Dyn 236:1583–1594

    PubMed  CAS  Google Scholar 

  73. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–12656

    PubMed  CAS  Google Scholar 

  74. Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    PubMed  CAS  Google Scholar 

  75. Wacker SA, Oswald F, Wiedenmann J, Knochel W (2007) A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev Dyn 236:473–480

    PubMed  CAS  Google Scholar 

  76. Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238

    PubMed  CAS  Google Scholar 

  77. Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3:e3944

    PubMed  Google Scholar 

  78. Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR (2009) Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev Neurobiol 69:761–779

    PubMed  CAS  Google Scholar 

  79. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    PubMed  CAS  Google Scholar 

  80. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    PubMed  CAS  Google Scholar 

  81. Falk MM, Baker SM, Gumpert AM, Segretain D, Buckheit RW 3rd (2009) Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles. Mol Biol Cell 20:3342–3352

    PubMed  CAS  Google Scholar 

  82. Kulesa PM, Teddy JM, Stark DA, Smith SE, McLennan R (2008) Neural crest invasion is a spatially-ordered progression into the head with higher cell proliferation at the migratory front as revealed by the photoactivatable protein, KikGR. Dev Biol 316:275–287

    PubMed  CAS  Google Scholar 

  83. Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y, Miyawaki A, Kanagawa O (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci U S A 105:10871–10876

    PubMed  CAS  Google Scholar 

  84. Nowotschin S, Hadjantonakis AK (2009) Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Dev Biol 9:49

    PubMed  Google Scholar 

  85. Kurotaki Y, Hatta K, Nakao K, Nabeshima Y, Fujimori T (2007) Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316:719–723

    PubMed  CAS  Google Scholar 

  86. Imai JH, Wang X, Shi SH (2010) Kaede-centrin1 labeling of mother and daughter centrosomes in mammalian neocortical neural progenitors. Curr Protoc Stem Cell Biol Chapter 5 Unit 5A 5

    Google Scholar 

  87. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci U S A 105:18343–18348

    PubMed  CAS  Google Scholar 

  88. Fuchs J, Bohme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7:627–630

    PubMed  CAS  Google Scholar 

  89. Tsien RY, Miyawaki A (1998) Seeing the machinery of live cells. Science 280:1954–1955

    PubMed  CAS  Google Scholar 

  90. Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33

    PubMed  Google Scholar 

  91. Fraser ST, Hadjantonakis AK, Sahr KE, Willey S, Kelly OG, Jones EA, Dickinson ME, Baron MH (2005) Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis 42:162–171

    PubMed  CAS  Google Scholar 

  92. Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385

    PubMed  CAS  Google Scholar 

  93. Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J, Hadjantonakis AK (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44:202–218

    PubMed  CAS  Google Scholar 

  94. Teddy JM, Lansford R, Kulesa PM (2005) Four-color, 4-D time-lapse confocal imaging of chick embryos. Biotechniques 39:703–710

    PubMed  CAS  Google Scholar 

  95. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    PubMed  CAS  Google Scholar 

  96. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    PubMed  CAS  Google Scholar 

  97. Ueno H, Weissman IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11:519–533

    PubMed  CAS  Google Scholar 

  98. Cooper MS, Szeto DP, Sommers-Herivel G, Topczewski J, Solnica-Krezel L, Kang HC, Johnson I, Kimelman D (2005) Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Dev Dyn 232:359–368

    PubMed  CAS  Google Scholar 

  99. Jacinto A, Wood W, Woolner S, Hiley C, Turner L, Wilson C, Martinez-Arias A, Martin P (2002) Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr Biol 12:1245–1250

    PubMed  CAS  Google Scholar 

  100. Langenberg T, Brand M (2005) Lineage restriction maintains a stable organizer cell population at the zebrafish midbrain-hindbrain boundary. Development 132:3209–3216

    PubMed  CAS  Google Scholar 

  101. Ribeiro C, Neumann M, Affolter M (2004) Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr Biol 14:2197–2207

    PubMed  CAS  Google Scholar 

  102. Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P (2003) Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 23:4013–4025

    PubMed  CAS  Google Scholar 

  103. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to the many authors whose work we were unable to cite due to space constraints. Work in our lab is supported by the NIH (RO1-HD052115 and RO1-DK084391), HFSP, and NYSTEM and the Muscular Dystrophy Association (186552 to S.N.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Nowotschin, S., Hadjantonakis, AK. (2014). Live Imaging Mouse Embryonic Development: Seeing Is Believing and Revealing. In: Lewandoski, M. (eds) Mouse Molecular Embryology. Methods in Molecular Biology, vol 1092. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-60327-292-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-292-6_24

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-60327-290-2

  • Online ISBN: 978-1-60327-292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics