Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 547))

Summary

Plans by the space program to use plants for food supply and environmental regeneration have led to an examination of how plants grow in microgravity. Because secondary metabolic compounds are so important in determining the nutritional and flavor characteristics of plants—as well as making plants more resistant to biotic and abiotic stresses—their responses to altered gravity are now being studied. These experiments are technically challenging because temperature, humidity, atmospheric composition, light, and water status must be maintained around the plant while simultaneously altering the g-load, either in the free-fall of orbital spacecraft or on a centrifuge rotor. In general, plants have shown increased accumulation of small secondary metabolites in microgravity (<10−3 g), while these have decreased in hypergravity (>1-g). Gravity-related changes in the plant environment as well as mechanical loading effects account for these responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferl, R., Wheeler, R., Levine, H.G. and Paul, A. (2002). Plants in space. Curr. Opin. Plant Biol. 5, 258–263.

    Article  PubMed  Google Scholar 

  2. Wink, M. (1999). Functions of plant secondary metabolites and their exploitation in biotechnology. Annual Plant Review, Vol. 3. Sheffield Academic, England.

    Google Scholar 

  3. Musgrave, M.E. (2002). Seeds in space. Seed Sci. Res. 12, 1–16.

    Article  Google Scholar 

  4. Musgrave, M.E., Kuang, A., Tuominen, L.K., Levine, L.H. and Morrow, R.C. (2005). Seed storage reserves and glucosinolates in Brassica rapa L. grown on the International Space Station. J. Am. Soc. Hort. Sci. 130, 848–856.

    CAS  Google Scholar 

  5. Pence, B.C. and Yang, T.C. (2000). Antioxidants: radiation and stress. In: Nutrition in Space-Flight and Weightlessness Models (Lane, H.W. and Schoeller, D.A., eds.) CRC Press, Boca Raton, FL, pp. 233–251.

    Google Scholar 

  6. Fang, Y., Yang, S. and Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition 18, 872–879.

    Article  CAS  PubMed  Google Scholar 

  7. Olabi, A.A., Lawless, H.T., Hunter, J.B., Levitsky, D.A. and Halpern, B.P. (2002). The effect of microgravity and space flight on the chemical senses. J. Food Sci. 67(2), 468–478.

    Article  CAS  PubMed  Google Scholar 

  8. Ryba-White, M., Nedukha, O., Hilaire, E., Guikema, J.A., Kordyum, E. and Leach, J.E. (2001). Growth in microgravity increases susceptibility of soybean to a fungal pathogen. Plant Cell Physiol. 42, 657–664.

    Article  CAS  PubMed  Google Scholar 

  9. Bishop, D.L., Levine, H.G., Kropp, B.R. and Anderson, A.J. (1997). Seedborne fungal contamination: consequences in space-grown wheat. Phytopathology 87, 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  10. Durzan, D.J. (1999). Gravisensing, apoptosis, and drug recovery in Taxus cell suspensions. Gravit. Space Biol. Bull. 12, 47–55.

    CAS  PubMed  Google Scholar 

  11. Demain, A.L. and Fang, A. (2001). Secondary metabolism in simulated microgravity. Chem. Rec. 1, 333–346.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, Q., Fang, A., Pierson, D.L., Mishra, S.K. and Demain, A.L. (2001). Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl. Environ. Microbiol. 56, 384–387.

    CAS  Google Scholar 

  13. Moore, R. (1990). Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells. Ann. Bot. 66, 541–549.

    CAS  PubMed  Google Scholar 

  14. Levine, L.H., Levine, H.G., Stryjewski, E.C., Prima, V. and Piastuch, W.C. (2001). Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings. J. Gravit. Physiol. 8, 21–27.

    CAS  PubMed  Google Scholar 

  15. Voeste, D., Levine, L.H., Levine, H.G. and Blüm, V. (2003). Pigment composition and concentrations within the plant (Ceratophyllum demersum L.) component of the STS-89 C.E.B.A.S. Mini-Module spaceflight experiment. Adv. Space Res. 31(1), 211–214.

    Article  CAS  PubMed  Google Scholar 

  16. Darnell, R.D., Levine, L.H., Bisbee, P.A., Allen, J. and Musgrave, M.E. (2007). Glucosinolate production in hypergravity in Brassica rapa. Gravit. Space Biol. 21, 33.

    Google Scholar 

  17. Levinskikh, M.A., Sytchev, V.N., Podolsky, I.G. and Bingham, G.E. (2001). Pioneering space experiments aimed at obtaining plant biomass to supplement crew food rations. Gravit. Space Biol. Bull. 15(1), 53.

    Google Scholar 

  18. O’Hare, T.J., Wong, L.S. and Force, L.E. (2007). Glucosinolate composition and anti-cancer potential of seed-sprouts from horticultural members of the Brassicaceae. In: Proceedings of the First International Symposium on Human Health Effects of Fruits and Vegetables (Desjardins, Y., ed.) ISHS Acta Horticulturae, Belgium, 744, 181–187.

    Google Scholar 

  19. Porterfield, D.M. (2002). The biophysical limitations in physiological transport and exchange in plants grown in microgravity. J. Plant Growth Regul. 21, 177–190.

    Article  CAS  PubMed  Google Scholar 

  20. Stutte, G.W., Monje, O., Goins, G.C. and Tripathy, B.C. (2005). Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 223, 46–56.

    Article  CAS  Google Scholar 

  21. Musgrave, M.E., Kuang, A., Xiao, Y., Stout, S.C., Bingham, G.E., Briarty, L.G., Levinskikh, M.A., Sychev, V.N. and Podolski, I.G. (2000). Gravity independence of seed-to-seed cycling in Brassica rapa. Planta 210, 400–406.

    Article  CAS  PubMed  Google Scholar 

  22. Bryant, J.P., Chapin, F.S. III and Klein, D.R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357–368.

    Article  CAS  Google Scholar 

  23. Lambers, H. (1993). Rising CO2, secondary plant metabolism, plant–herbivore interactions and litter decomposition. Theore-tical considerations. Vegetation 104/105, 263–271.

    Article  Google Scholar 

  24. Penuelas, J. and Estiarte, M. (1998). Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 13, 20–24.

    Article  CAS  PubMed  Google Scholar 

  25. Lavola, A. and Julkunen-Tiitto, R. (1994). The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99, 315–321.

    Article  Google Scholar 

  26. Idso, S.B. and Idso, K.E. (2001). Effects of atmospheric CO2 enrichment on plant constituents related to animal and human health. Environ. Exp. Bot. 45, 179–199.

    Article  CAS  PubMed  Google Scholar 

  27. Tuominen, L.K. and Musgrave, M.E. (2006). Tissue culture in synthetic atmospheres: diffusion rate effects on cytokinin-induced callus growth and isoflavonoid production in soybean (Glycine max (L.) Merr. cv. Acme) Plant Growth Regul. 49, 167–175.

    Article  CAS  Google Scholar 

  28. Pan, Z., Wang, H. and Zhong, J. (2000). Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. Enzyme Microb. Technol. 27, 714–723.

    Article  CAS  PubMed  Google Scholar 

  29. Schlatmann, J.E., Nuutila, A.M., van Gulik, W.M., ten Hoopen, H.J.G., Verpoorte, R. and Heijnen, J.J. (1993). Scaleup of ajmalicine production by plant cell cultures of Catharanthus roseus. Biotech. Bioeng. 41, 253–262.

    Article  CAS  Google Scholar 

  30. Schlatmann, J.E., Moreno, P.R.H., Vinke, J.L., ten Hoopen, H.J.G., Verpoorte, R. and Heijnen, J.J. (1997). Gaseous metabolites and the ajmalicine production rate in high density cell cultures of Catharanthus roseus. Enzyme Microb. Technol. 20, 107–115.

    Article  CAS  Google Scholar 

  31. Linden, J.C., Mirjalili, N., Haigh, J.R. and Sun, X. (1995). An examination of dissolved gas effects on growth and secondary metabo-lism of Taxus and Artemisia cell cultures. Abstr. Pap. Am. Chem. Soc. 209, 082.

    Google Scholar 

  32. Tate, J.L. and Payne, G.E. (1991). Plant cell growth under different levels of oxygen and carbon dioxide. Plant Cell Rep. 10, 22–25.

    Article  CAS  PubMed  Google Scholar 

  33. Tisserat, B., Vaughn, S.F. and Silman, R. (2002). Influence of modified oxygen and carbon dioxide atmospheres on mint and thyme plant growth, morphogenesis, and secondary metabolism in vitro. Plant Cell Rep. 20, 912–916.

    Article  CAS  Google Scholar 

  34. Nan, R., Carman, J.G. and Salisbury, F.B. (2002). Water stress, CO2 and photoperiod influence hormone levels in wheat. J. Plant Physiol. 159, 307–312.

    Article  CAS  PubMed  Google Scholar 

  35. Campbell, W.F., Salisbury, F.B., Bugbee, B., Klassen, S., Naegle, E., Strickland, D.T., Bingham, G.E., Levinskikh, M., Iljina, G.M., Veselova, T.D., Sytchev, V.N., Podolsky, I., McManus, W.R., Bubenheim, D.L., Stieber, J. and Jahns, G. (2001). Comparative floral development of Mir-grown and ethylene-treated, earth-grown Super Dwarf wheat. J. Plant Physiol. 158, 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  36. Werner, T., Motyka, V., Strnad, M. and Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proc. Natl Acad. Sci. U. S. A. 98, 10487–10492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K. and Kamisaka, S. (2002). Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol. 43, 1067–1071.

    Article  CAS  PubMed  Google Scholar 

  38. Deikman, J. and Hammer, P.E. (1995). Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol. 108, 47–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Taiz, L. and Zeiger, E. (1998). Plant Physiology, 2nd edn, Sunderland, MA: Sinauer Associates, Inc.

    Google Scholar 

  40. Rudat, A. and Göring, H. (1995). Induction of betacyanin formation in cell cultures of Chenopodium album under UV-light irradiation. J. Exp. Bot. 282, 129–134.

    Article  Google Scholar 

  41. Miller, C.O. (1969). Control of deoxyisoflavone synthesis in soybean tissue. Planta 87, 26–35.

    Article  CAS  PubMed  Google Scholar 

  42. Miller, C.O. (1972). Modification of the cytokinin promotion of deoxyisoflavone synthesis in soybean tissue. Plant Physiol. 49, 310–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imbault, N., Thiersault, M., Dupéron, P., Benabdelmouna, A. and Doireau, P. (1996). Pravastatin: a tool for investigating the availability of mevalonate metabolites for primary and secondary metabolism in Catharanthus roseus cell suspensions. Physiol. Plant. 98, 803–809.

    Article  CAS  Google Scholar 

  44. Girod, P. and Zryd, J. (1991). Secondary metabolism in cultured red beet (Beta vulgaris L.) cells: differential regulation of betaxanthin and betacyanin biosynthesis. Plant Cell Tiss. Organ Cult. 25, 1–12.

    Article  CAS  Google Scholar 

  45. Vanhala, L., Eeva, M., Lapinjoki, S., Hiltunen, R. and Oksman-Caldentey, K. (1998). Effect of growth regulators on transformed root cultures of Hyoscyamus muticus. J. Plant Physiol. 153, 475–481.

    Article  CAS  Google Scholar 

  46. Van der Plas, L.H.W., Eijkelboom, C. and Hagendoorn, M.J.M. (1995). Relation between primary and secondary metabolism in plant cell suspensions: competition between secondary metabolite production and growth in a model system (Morinda citrifolia). Plant Cell Tiss. Organ Cult. 43, 111–116.

    Article  CAS  Google Scholar 

  47. Canel, C., Lopes-Cardoso, M.I., Whitmer, S., van der Fits, L., Pasquali, G., van der Heijden, R., Hoge, J.H.C. and Verpoorte, R. (1998). Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205, 414–419.

    Article  CAS  PubMed  Google Scholar 

  48. Arroo, R.R.J., Develi, A., Meijers, H., Vandewesterlo, E., Kemp, A.K., Croes, A.F. and Wullems, G.J. (1995). Effect of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiol. Plant. 93, 233–240.

    Article  CAS  Google Scholar 

  49. Klaus, D.M. (2004). Gravitational influence on biomolecular engineering processes. Gravit. Space Biol. Bull. 17(2), 51–65.

    Google Scholar 

  50. Higuchi, T. (1997). Biochemistry and molecular biology of wood. Springer, New York, pp 263–290.

    Google Scholar 

  51. Ko, J.H., Han, K.H., Park, S. and Yang, J. (2004). Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole transcriptome profiling. Plant Physiol. 135, 1069–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Braam, J. (1992). Regulated expression of the calmodulin-related TCH genes in cultured Arabidopisis cells: induction by calcium and heat shock. Proc. Natl Acad. Sci. U. S. A. 99, 3213–3216.

    Article  Google Scholar 

  53. Levine, L.H., Heyenga, A.G., Levine, H.G., Choi, J., Davin, L.B., Krikorian, A.D. and Lewis, N.G. (2001). Cell-wall architecture and lignin composition of wheat developed in a microgravity environment. Phytochemistry 57, 835–846.

    Article  CAS  PubMed  Google Scholar 

  54. Cowles, J.R., Scheld, H.W., LeMay, R. and Peterson, C. (1984). Experiments on plants grown in space: growth and lignification in seedlings exposed to eight days of microgravity. Ann. Bot. 54(S3), 33–48.

    CAS  PubMed  Google Scholar 

  55. Tamaoki, D., Karahara, I., Schreiber, L., Wakasugi, T., Yamada, K. and Kamisaka, S. (2006). Effects of hypergravity conditions on elongation growth and lignin formation in the inflorescence stem of Arabidopsis thaliana L. J. Plant Res. 119(2), 79–84.

    Article  CAS  PubMed  Google Scholar 

  56. Wakabayashi, K., Soga, K., Kamisaka, S. and Hoson, T. (2005). Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions. Space life sciences: gravity-related effects on plants and spaceflight and man-made environments on biological systems. Adv. Space Res. 36(7) 1292–1297, Special Issue 2005.

    Article  CAS  Google Scholar 

  57. Hoffmann, E., Schonherr, K. and Hampp, R. (1996). Regeneration of plant cell protoplasts under microgravity: investigation of protein patterns by SDS–PAGE and immunoblotting. Plant Cell Rep. 15, 914–919.

    Article  CAS  Google Scholar 

  58. Kwon, M., Bedgar, D.L., Piastuch, W., Davin, L.B. and Lewis, N.G. (2001). Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. Phytochemistry 57, 847–857.

    Article  CAS  PubMed  Google Scholar 

  59. Soga, K., Wakabayashi, K., Kamisaka, S. and Hoson, T. (2005). Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean. Funct. Plant Biol. 32, 175–179.

    Article  PubMed  Google Scholar 

  60. Nakabayashi, I., Karahara, I., Tamaoki, D., Masuda, K., Wakasugi, T., Yamada, K., Soga, K., Hoson, T. and Kamisaka, S. (2006). Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Ann. Bot. 97, 1083–1090.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Allen, J., Kuang, A., Regan, M. and Musgrave, M.E. (2007). Gravity effects on growth form of Brassica rapa L. and Arabidopsis thaliana (L.) Heyhn. Gravit. Space Biol. 21(1), 32.

    Google Scholar 

  62. Soga, K., Wakabayashi, K., Kamisaka, S. and Hoson, T. (2004). Graviperception in growth inhibition of plant shoots under hypergravity condition produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors. Planta 218, 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  63. Benoit, M.R., Li, W., Stodieck, L.S., Lam, K.S., Winther, C.L., Roane, T.M. and Klaus, D.M. (2006). Microbial antibiotic production aboard the International Space Station. Appl. Microbiol. Biotech. 70, 403–411.

    Article  CAS  Google Scholar 

  64. Lam, K.S., Marnber, S.W., Pack, E.J., Forenza, S., Fernandes, P.B. and Klaus, D.M. (1998). The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid-state fermentation. Appl. Microbiol. Biotech. 49, 579–583.

    Article  CAS  Google Scholar 

  65. Allen, J., Bisbee, P.A., Darnell, R.L., Kuang, A., Levine, L.H., Musgrave, M.E. and van Loon, J.J.W.A. (2009). Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (Brassicaceae): Consequences for secondary metabolism. Am. J. Bot. 96, in press.

    Google Scholar 

Download references

Acknowledgments

This research is supported by NASA grants NAG 10-329 and NNX07AT77G to MEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Musgrave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tuominen, L.K., Levine, L.H., Musgrave, M.E. (2009). Plant Secondary Metabolism in Altered Gravity. In: Jain, S.M., Saxena, P.K. (eds) Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Methods in Molecular Biology, vol 547. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-287-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-287-2_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-286-5

  • Online ISBN: 978-1-60327-287-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics