Skip to main content

Zebrafish as a Simple Vertebrate Organism for Epilepsy Research

  • Protocol
  • First Online:
Animal Models of Epilepsy

Part of the book series: Neuromethods ((NM,volume 40))

Abstract

For many years, scientists have developed animal models of epilepsy to study specific aspects of the human condition. Rodents are the species of choice in the vast majority of these studies. In a departure from these rodent-centric models, we here describe zebrafish (Danio rerio), a genetically tractable vertebrate that is particularly well suited to epilepsy research. Zebrafish do not possess the complex central nervous system we have come to expect in other animal models and will never be mistaken for miniature versions of the complex mammalian brain. Nonetheless, the nervous system of this “simple” vertebrate is comprised of individual elements (glutamatergic excitatory neurons and GABAergic inhibitory neurons, for example) that we routinely study as critical to the generation of abnormal electrical discharge in all higher species. In electrophysiological and behavioral studies, we have shown that seizures elicited by acute convulsant treatment (i.e., pentylenetetrazole, PTZ) or knockdown of zebrafish homologs for human genetic epilepsy disorders (i.e., tuberous sclerosis complex, TSC) reliably evoke seizures in developing zebrafish. Using tectal or forebrain recordings, we also show that this epileptiform activity is sensitive to well-established antiepileptic drugs (many initially identified in rodents). Overall, our studies highlight two important aspects of this model: (i) electrical features reminiscent of mammalian seizure syndromes can be reproduced in zebrafish and (ii) zebrafish may be useful in an antiepileptic drug-screening strategy. Given the untapped potential for high-throughput drug discovery, analysis of genetic forms of epilepsy, or large-scale mutagenesis screens to identify novel seizure-modifying genes, zebrafish could provide an essential tool for understanding (and treating) epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scher MS, Hamid MY, Steppe DA, Beggarly ME, Painter MJ. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 1993;34(2):284–8.

    Article  PubMed  CAS  Google Scholar 

  2. Scher MS, Aso K, Beggarly ME, Hamid MY, Steppe DA, Painter MJ. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 1993;91(1):128–34.

    PubMed  CAS  Google Scholar 

  3. Kramer U, Nevo Y, Neufeld MY, Fatal A, Leitner Y, Harel S. Epidemiology of epilepsy in childhood: A cohort of 440 consecutive patients. Pediatr Neurol 1998;18(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  4. Purpura DP, Housepian EM. Morphological and physiological properties of chronically isolated immature neocortex. Exp Neurol 1961;4:377–401.

    Article  PubMed  CAS  Google Scholar 

  5. Crain SM. Development of "organotypic" bioelectric activities in central nervous tissues during maturation in culture. Int Rev Neurobiol 1966;9:1–43.

    Article  PubMed  CAS  Google Scholar 

  6. Insel TR, Miller LP, Gelhard RE. The ontogeny of excitatory amino acid receptors in rat forebrain – I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience 1990;35(1):31–43.

    Article  PubMed  CAS  Google Scholar 

  7. Casabona G, Genazzani AA, Di Stefano M, Sortino MA, Nicoletti F. Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1S,3R-aminocyclopentane-1, 3-dicarboxylic acid in brain slices. J Neurochem 1992;59(3):1161–3.

    Article  PubMed  CAS  Google Scholar 

  8. Moshe SL, Albala BJ. Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Ann Neurol 1983;13(5):552–7.

    Article  PubMed  CAS  Google Scholar 

  9. Albala BJ, Moshe SL, Okada R. Kainic-acid-induced seizures: A developmental study. Brain Res 1984;315(1):139–48.

    PubMed  CAS  Google Scholar 

  10. Baram TZ, Hirsch E, Schultz L. Short-interval amygdala kindling in neonatal rats. Brain Res Dev Brain Res 1993;73(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  11. Detrich HW, 3rd, Westerfield M, Zon LI. Overview of the zebrafish system. Methods Cell Biol 1999;59:3–10.

    Google Scholar 

  12. Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000;26(2):216–20.

    Article  PubMed  CAS  Google Scholar 

  13. Appel B. Zebrafish neural induction and patterning. Dev Dyn 2000;219(2):155–68.

    Article  PubMed  CAS  Google Scholar 

  14. Moens CB, Prince VE. Constructing the hindbrain: Insights from the zebrafish. Dev Dyn 2002;224(1):1–17.

    Article  PubMed  Google Scholar 

  15. Wullimann MF, Rink E. The teleostean forebrain: A comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Res Bull 2002;57(3–4):363–70.

    Article  PubMed  CAS  Google Scholar 

  16. Wullimann MF, Mueller T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J Comp Neurol 2004;475(2):143–62.

    Article  PubMed  CAS  Google Scholar 

  17. Ma P. Catecholaminergic systems in the zebrafish. IV. Organization and projection pattern of dopaminergic neurons in the diencephalon. J Comp Neurol 2003;460(1):13–37.

    CAS  Google Scholar 

  18. Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001;440(4):342–77.

    Article  PubMed  CAS  Google Scholar 

  19. Higashijima S, Mandel G, Fetcho JR. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 2004;480(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  20. Edwards JG, Michel WC. Pharmacological characterization of ionotropic glutamate receptors in the zebrafish olfactory bulb. Neuroscience 2003;122(4):1037–47.

    Article  PubMed  CAS  Google Scholar 

  21. Kim YJ, Nam RH, Yoo YM, Lee CJ. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett 2004;355(1–2):29–32.

    Article  PubMed  CAS  Google Scholar 

  22. Smear MC, Tao HW, Staub W, Orger MB, Gosse NJ, Liu Y, Takahashi K, Poo MM, Baier H. Vesicular glutamate transport at a central synapse limits the acuity of visual perception in zebrafish. Neuron 2007;53(1):65–77.

    Article  PubMed  CAS  Google Scholar 

  23. Ettl AK, Holzschuh J, Driever W. The zebrafish mutation m865 affects formation of dopaminergic neurons and neuronal survival, and maps to a genetic interval containing the sepiapterin reductase locus. Anat Embryol (Berl) 2006Dec;211(l) (1):73–86.

    Google Scholar 

  24. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 2007;4(4):323–6.

    PubMed  CAS  Google Scholar 

  25. Mione M, Baldessari D, Deflorian G, Nappo G, Santoriello C. How neuronal migration contributes to the morphogenesis of the CNS: Insights from the zebrafish. Dev Neurosci 2008;30(1–3):65–81.

    Article  PubMed  CAS  Google Scholar 

  26. Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005;131(3):759–68.

    Article  PubMed  CAS  Google Scholar 

  27. Kuebler D, Zhang H, Ren X, Tanouye MA. Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol 2001;86(3):1211–25.

    PubMed  CAS  Google Scholar 

  28. Pavlidis P, Tanouye MA. Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. J Neurosci 1995;15(8):5810–19.

    PubMed  CAS  Google Scholar 

  29. Williams SN, Locke CJ, Braden AL, Caldwell KA, Caldwell GA. Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum Mol Genet 2004;13(18):2043–59.

    Article  PubMed  CAS  Google Scholar 

  30. Langheinrich U. Zebrafish: A new model on the pharmaceutical catwalk. Bioessays 2003;25(9):904–12.

    Google Scholar 

  31. Berghmans S, Hunt J, Roach A, Goldsmith P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 2007;75(1):18–28.

    Article  PubMed  CAS  Google Scholar 

  32. Sajovic P, Levinthal C. Inhibitory mechanism in zebrafish optic tectum: Visual response properties of tectal cells altered by picrotoxin and bicuculline. Brain Res 1983;271(2):227–40.

    Article  PubMed  CAS  Google Scholar 

  33. Kim CH, Ueshima E, Muraoka O, et al. Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci Lett 1996;216(2):109–12.

    Article  PubMed  CAS  Google Scholar 

  34. Orger MB, Smear MC, Anstis SM, Baier H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat Neurosci 2000;3(11):1128–33.

    Article  PubMed  CAS  Google Scholar 

  35. Nam RH, Kim W, Lee CJ. NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci Lett 2004;370(2–3):248–51.

    Article  PubMed  CAS  Google Scholar 

  36. Edwards JG, Michel WC. Odor-stimulated glutamatergic neurotransmission in the zebrafish olfactory bulb. J Comp Neurol 2002;454(3):294–309.

    Article  PubMed  CAS  Google Scholar 

  37. Mack-Bucher JA, Li J, Friedrich RW. Early functional development of interneurons in the zebrafish olfactory bulb. Eur J Neurosci 2007;25(2):460–70.

    Article  PubMed  Google Scholar 

  38. Yamatogi Y, Ohtahara S. Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases. Brain Dev 2002;24(1):13–23.

    Article  PubMed  Google Scholar 

  39. Al-Futaisi A, Banwell B, Ochi A, Hew J, Chu B, Oishi M, Otsubo H. Hidden focal EEG seizures during prolonged suppressions and high-amplitude bursts in early infantile epileptic encephalopathy. Clin Neurophysiol 2005;116(5):1113–17.

    Article  PubMed  Google Scholar 

  40. Baraban SC, Dinday MT, Castro PA, Chege S, Guyenet S, Taylor MR. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 2007;48(6):1151–1157.

    Article  PubMed  Google Scholar 

  41. Wong M, Wozniak DF, Yamada KA. An animal model of generalized nonconvulsive status epilepticus: Immediate characteristics and long-term effects. Exp Neurol 2003;183(1):87–99.

    Article  PubMed  CAS  Google Scholar 

  42. McColl CD, Horne MK, Finkelstein DI, Wong JY, Berkovic SF, Drago J. Electroencephalographic characterisation of pentylenetetrazole-induced seizures in mice lacking the alpha 4 subunit of the neuronal nicotinic receptor. Neuropharmacology 2003;44(2):234–43.

    Article  PubMed  CAS  Google Scholar 

  43. Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH. The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: Comparison with pentylenetetrazol. J Pharmacol Exp Ther 2006;317(3):1337–48.

    Article  PubMed  CAS  Google Scholar 

  44. Bains JS, Longacher JM, Staley KJ. Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nature Neurosci 1999;2(8):720–26.

    Article  PubMed  CAS  Google Scholar 

  45. Dzhala VI, Staley KJ. Transition from interictal to ictal activity in limbic networks in vitro. J. Neurosci 2003;23(21):7873–80.

    PubMed  CAS  Google Scholar 

  46. Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL. Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J. Neurosci 2004;19:590–600.

    Article  PubMed  Google Scholar 

  47. Ribera AB, Nüsslein-Volhard C. Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J Neurosci 1998;18(22):9181–91.

    PubMed  CAS  Google Scholar 

  48. Drapeau P, Ali DW, Buss RR, Saint-Amant L. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J Neurosci Methods 1999;88(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  49. Saint-Amant L, Drapeau P. Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J Neurosci 2000;20(11):3964–72.

    PubMed  CAS  Google Scholar 

  50. Cox KJA, Fetcho JR. Labeling blastomeres with a calcium indicator: a non-invasive method of visualizing neuronal activity in zebrafish. J Neurosci Methods 1996;68:185–91.

    Article  PubMed  CAS  Google Scholar 

  51. Nicolson T, Rüsch A, Friedrich RW, Granato M, Ruppersberg JP, Nüsslein-Volhard C. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 1998;20(2):271–83.

    Article  PubMed  CAS  Google Scholar 

  52. Miyawaki A, Griesbeck O, Heim R, Tsien RY. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 1999;96:2135–40.

    Article  PubMed  CAS  Google Scholar 

  53. Higashijima S, Masino MA, Mandel G, Fetcho JR. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 2003;90:3986–97.

    Article  PubMed  Google Scholar 

  54. Wachowiak M, Denk W, Friedrich RW. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc Natl Acad Sci U S A 2004;101(24):9097–102.

    Article  PubMed  CAS  Google Scholar 

  55. Ramdya P, Reiter B, Engert F. Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo. J Neurosci Methods 2006;157:230–7.

    Article  PubMed  CAS  Google Scholar 

  56. Merritt HH, Putnam TJ. Sodium diphenylhydantoinate in the treatment of convulsive disorders. J Am Med Assoc 1938;123:1253–59.

    Google Scholar 

  57. Richards RK, Everett GM. Analgesic and anticonvulsive properties of 3,5,5-trimethyloxazoliidine-2,4-dione (Tridione). Fed Proc 1944;3:39.

    Google Scholar 

  58. Stilwell GE, Saraswati S, Littleton JT, Chouinard SW. Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur J Neurosci 2006;24:2211–22.

    Article  PubMed  Google Scholar 

  59. Freiman TM, Surges R, Kukolja J, Heinemeyer J, Klar M, van Velthoven V, Zentner J. K(+)-evoked [(3)H]-norepinephrine release in human brain slices from epileptic and non-epileptic patients is differentially modulated by gabapentin and pinacidil. Neurosci Res 2006;55(2):204–10.

    Article  PubMed  CAS  Google Scholar 

  60. Alzheimer C, ten Bruggencate G. Actions of BRL 34915 (Cromakalim) upon convulsive discharges in guinea pig hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 1988;337(4):429–34.

    Google Scholar 

  61. Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993;75(7):1305–15.

    Article  Google Scholar 

  62. van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997;277(5327):805–8.

    Article  PubMed  Google Scholar 

  63. Thomas G, Hall MN. TOR signalling and control of cell growth. Curr Opin Cell Biol 1997;9(6):782–7.

    Article  PubMed  CAS  Google Scholar 

  64. Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 2001;105(3):345–55.

    Article  PubMed  CAS  Google Scholar 

  65. Ito N, Rubin GM. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell 1999;96(4):529–39.

    Google Scholar 

  66. Gomez MR. History of the tuberous sclerosis complex. Brain Dev 1995;17(l):55–7.

    Article  PubMed  Google Scholar 

  67. Shepherd CW, Houser OW, Gomez MR. MR findings in tuberous sclerosis complex and correlation with seizure development and mental impairment. AJNR Am J Neuroradiol 1995;16(1):149–55.

    PubMed  CAS  Google Scholar 

  68. Goodman M, Lamm SH, Engel A, Shepherd CW, Houser OW, Gomez MR. Cortical tuber count: A biomarker indicating neurologic severity of tuberous sclerosis complex. J Child Neurol 1997;12(2): 85–90.

    Article  PubMed  CAS  Google Scholar 

  69. Pan D, Dong J, Zhang Y, Gao X. Tuberous sclerosis complex: From Drosophila to human disease. Trends Cell Biol 2004;14(2):78–85.

    Article  PubMed  CAS  Google Scholar 

  70. Liu S, Lu W, Obara T, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 2002;129(24):5839–46.

    Article  PubMed  CAS  Google Scholar 

  71. Campbell WA, Yang H, Zetterberg H, et al. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J Neurochem 2006;96(5):1423–40.

    Article  PubMed  CAS  Google Scholar 

  72. Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI. Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 2007;16(16):1905–20.

    Article  PubMed  CAS  Google Scholar 

  73. Onda H, Crino PB, Zhang H, et al. Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 2002;21(4):561–74.

    Article  PubMed  CAS  Google Scholar 

  74. Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J Child Neurol 2004;19(9):716–25.

    PubMed  Google Scholar 

  75. Bebin EM, Kelly PJ, Gomez MR. Surgical treatment for epilepsy in cerebral tuberous sclerosis. Epilepsia 1993;34(4):651–7.

    Article  PubMed  CAS  Google Scholar 

  76. Guerreiro MM, Andermann F, Andermann E, et al. Surgical treatment of epilepsy in tuberous sclerosis: strategies and results in 18 patients. Neurology 1998;51(5):1263–9.

    PubMed  CAS  Google Scholar 

  77. Holmes GL, Stafstrom CE. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 2007;48(4):617–30.

    Article  PubMed  Google Scholar 

  78. Chandra PS, Salamon N, Huang J, et al. FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: A preliminary report. Epilepsia 2006;47(9):1543–9.

    Article  PubMed  Google Scholar 

  79. Wu JY, Sutherling WW, Koh S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 2006;66(8):1270–2.

    Article  PubMed  CAS  Google Scholar 

  80. Madhavan D, Weiner HL, Carlson C, Devinsky O, Kuzniecky R. Local epileptogenic networks in tuberous sclerosis complex: a case review. Epilepsy Behav 2007;11(1):140–6.

    Article  PubMed  Google Scholar 

  81. Uhlmann EJ, Wong M, Baldwin RL, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52(3):285–96.

    Article  PubMed  CAS  Google Scholar 

  82. Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27(21):5546–58.47.

    Article  PubMed  CAS  Google Scholar 

  83. Wang Y, Greenwood JS, Calcagnotto ME, Kirsch HE, Barbaro NM, Baraban SC. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann Neurol 2007;61(2):139–52.

    Article  PubMed  CAS  Google Scholar 

  84. Kim YJ, Nam RH, Yoo YM, Lee CJ. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett 2004;355(1–2):29–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the NIH (RO1 NS-053479-02) and the DOD Congressionally Directed Medical Research Program (TS050003). The author would like to thank Michael Taylor for performing morpholino injections and initial anatomical characterization of Tsc morphant zebrafish. The author would also like to thank Matthew Dinday for maintenance of the zebrafish aquarium and participation in the AED drug screening studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baraban, S.C. (2009). Zebrafish as a Simple Vertebrate Organism for Epilepsy Research. In: Baraban, S. (eds) Animal Models of Epilepsy. Neuromethods, vol 40. Humana Press. https://doi.org/10.1007/978-1-60327-263-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-263-6_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-262-9

  • Online ISBN: 978-1-60327-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics