Skip to main content

Viral Vector Gene Therapy for Epilepsy

  • Protocol
  • First Online:
Animal Models of Epilepsy

Part of the book series: Neuromethods ((NM,volume 40))

Abstract

Theoretically, gene therapy offers an attractive alternative for the treatment of focal epilepsies, and recently, studies have established the basic viability of anti-seizure gene therapy by employing a number of diverse approaches. Using recombinant adeno-associated virus (AAV) vectors, significant seizure suppression has been obtained in vivo by interrupting NMDA receptor function or by altering GABA receptor composition. Similarly, engineering cells to release GABA or adenosine has been shown to exert significant anti-seizure actions. In addition, studies have reported seizure suppression using in vivo, viral vector-mediated expression of GDNF, ICP10PK , or clostridial light chain. At present though, studies with the neuroactive peptides, galanin and neuropeptide Y (NPY), have progressed the furthest. AAV vector-mediated expression and constitutive secretion of galanin essentially prevents electrographic and behavioral seizure activity induced by peripheral kainic acid administration, prevents seizure-induced cell damage, and attenuates the seizure threshold in previously kindled animals. For NPY, AAV vector-mediated expression of prepro-neuropeptide Y delays seizure onset and increases kindling seizure thresholds, while expression and constitutive secretion of NPY (13-36) attenuates kainic acid-induced seizures. These results have proven quite promising, but several key issues remain, including the adequate transduction of chronic seizure-exposed tissue. In light of the present advances, however, gene therapeutic approaches will provide an effective treatment alternative for intractable, focal seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. “How common are the “common” neurologic disorders?” Neurology 2007;68:326–37.

    Article  PubMed  CAS  Google Scholar 

  2. Hauser WA, Hesdorffer DC. Epilepsy frequency, causes, and consequences. New York, Demos Publications, 1990.

    Google Scholar 

  3. Shafer PO, Begley C. The human and economic burden of epilepsy. Epilepsy Behav 2000;1:91–92.

    Article  PubMed  Google Scholar 

  4. Loscher W, Leppik IE. Critical re-evaluation of previous preclinical strategies for the discovery and the development of new antiepileptic drugs. Epilepsy Res 2002;50:17–20.

    Article  PubMed  CAS  Google Scholar 

  5. Shafer SQ, Hauser WA, Annegers JF, Klass DW. EEG and other early predictors of epilepsy remission: A community study. Epilepsia 1988;29:590–600.

    Article  PubMed  CAS  Google Scholar 

  6. Engel JJr, Levesque MF, Shields WD. Surgical treatment of the epilepsies: Presurgical evaluation. Clin Neurosurg 1992;38:514–34.

    PubMed  Google Scholar 

  7. Sander JW. Some aspects of prognosis in the epilepsies: A review. Epilepsia 1993;34:1007–16.

    Article  PubMed  CAS  Google Scholar 

  8. Siegel AM. Presurgical evaluation and surgical treatment of medically refractory epilepsy. Neurosurg Rev 2004;27:1–18.

    Article  PubMed  Google Scholar 

  9. Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly RA. Access to the posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 1984;15:667–71.

    Article  PubMed  CAS  Google Scholar 

  10. Semah F, Picot MC, Adan C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 1998;51:1256–62.

    PubMed  CAS  Google Scholar 

  11. Ure JA, Perassolo M. Update on the pathophysiology of the epilepsies. J Neurol. Sci 2000;177:1–17.

    Article  PubMed  CAS  Google Scholar 

  12. Woldbye DPD, Larsen PJ, Mikkelsen JD, Klemp K, Madsen TM, Bolwig TG. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat Med 1997;3:761–4.

    Article  PubMed  CAS  Google Scholar 

  13. Baraban SC, Hollopeter G, Erickson JC, Schwartzkroin PA, Palmiter RD. Knock-out mice reveal a critical role for neuropeptide Y. J Neurosci 1997;17:8927–36.

    PubMed  CAS  Google Scholar 

  14. Mazarati AM, Lie H, Soomets U, Sankar R, Shin D, Katsumori H, Langel U, Wasterlain CG. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 1998;18:10070–7.

    PubMed  CAS  Google Scholar 

  15. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 1992;256:1217–21.

    Article  PubMed  CAS  Google Scholar 

  16. Hollmann M, Heinemann S. Cloned glutamate receptors. Ann Rev Neurosci 1994;7:31–108.

    Article  Google Scholar 

  17. Haberman RP, Criswell HE, Snowdy S, Ming Z, Breese GR, Samulski RJ, McCown TJ. Therapeutic liabilities of in vivo viral vector tropism: Adeno-associated virus (AAV) vectors, NMDAR 1 antisense and focal seizure sensitivity. Mol Ther 2002;6:495–500.

    Article  PubMed  CAS  Google Scholar 

  18. Haberman RP, McCown TJ, Samulski RJ. Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther 1998;5:1604–11.

    Article  PubMed  CAS  Google Scholar 

  19. Macdonald RL, Gallagher MJ, Feng HJ, Kang J. GABA(A) receptor epilepsy mutations. Biochem Pharmacol 2004;68:1497–506.

    Article  PubMed  CAS  Google Scholar 

  20. Buhl E, Otis T, Mody I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 1996;271:369–73.

    Article  PubMed  CAS  Google Scholar 

  21. Gibbs JW 3rd, Shumate MD, Coulter DA. Differential epilepsy-associated alterations in postsynaptic GABAA receptor function in dentate granule cells and CA1 neurons. J Neurophysiol 1997;77:1924–38.

    PubMed  Google Scholar 

  22. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat Med 1998;4:1166–72.

    Article  PubMed  CAS  Google Scholar 

  23. Brooks-Kayal AR, Shumate MD, Jin H, Lin DD, Rikhter TY, Holloway KL, Coulter DA. Human neuronal γ-aminobutyric acidA receptors: Coordinated subunit mRNA expression and functional correlates in individual dentate granule cells. J Neurosci 1999;19:8312–18.

    PubMed  CAS  Google Scholar 

  24. Peng Z, Huang CS, Stell BM, Mody I, Houser CR. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 2004;24:10167–75.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 2007;27:7520–31.

    Article  PubMed  CAS  Google Scholar 

  26. Xiao X, McCown TJ, Li J, Breese GR, Morrow AL, Samulski RJ. Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABAA α1 containing receptors and increases collicular seizure sensitivity. Brain Res 1997:576:76–83.

    Article  Google Scholar 

  27. Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, Russek SJ, Brooks-Kayal AR. Enhancing GABA(A) receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci2006;26:11342–6.

    Article  PubMed  CAS  Google Scholar 

  28. Roberts D, Raol YSH, Budrick E, Lund I, Passini M, Wolfe J, Brooks-Kayal AR, Russek SJ. Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABAA receptor alpha4 subunit expression. Proc Natl Acad Sci U S A 2005;102:11894–9.

    Article  PubMed  CAS  Google Scholar 

  29. Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N, King MA. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998;150:183–94.

    Article  PubMed  CAS  Google Scholar 

  30. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reir PJ, Mandel RJ, Muzyczka N. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2 and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004;10:302–17.

    Article  PubMed  CAS  Google Scholar 

  31. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996;713:99–107.

    Article  PubMed  CAS  Google Scholar 

  32. Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002;300:2–8.

    Article  PubMed  CAS  Google Scholar 

  33. Thompson KW, Anantharam V, Sehrstock S, Bongarzone E, Campagnoni A, Tobin AJ. Conditionally immortalized cell lines, engineered to produce and release GABA, modulate the development of behavioral seizures. Exp Neurol 2000;161:481–9.

    Article  PubMed  CAS  Google Scholar 

  34. Gernert M, Thompson KW, Loscher W, Tobin AJ. Genetically engineered GABA-producing cells demonstrate anticonvulsant effects and long-term transgene expression when transplanted into the central piriform cortex of rats. Exp Neurol 2002;176:183–92.

    Article  PubMed  CAS  Google Scholar 

  35. Castillo CG, Mendoza S, Freed WJ, Giordano M. Intranigral transplants of immortalized GABAergic cells decrease the expression of kainic acid-induced seizures in the rat. Behav Brain Res 2006;171:109–15.

    Article  PubMed  CAS  Google Scholar 

  36. Thompson KW, Suchomelova LM. Transplants of cells engineered to produce GABA suppress spontaneous seizures. Epilepsia 2004;45:4–12.

    Article  PubMed  CAS  Google Scholar 

  37. Thompson KW. Genetically engineered cells with regulatable GABA production can affect afterdischarges and behavioral seizures after transplantation into the dentate gyrus. Neurosci 2005;133:1029–37.

    Article  CAS  Google Scholar 

  38. Choi-Lundberg DL, Lin Q, Chang YN, Hay CM, Mohajeri H, Davidson BL, Bohn MC. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 1997;275:838–41.

    Article  PubMed  CAS  Google Scholar 

  39. Mandel RJ, Spratt SK, Snyder RO, Leff SE. Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc Nat Acad Sci U S A 1997;94:14083–8.

    Article  CAS  Google Scholar 

  40. Martin D, Miller G, Rosendahl M, Russell DA. Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res 1995;683:172–8.

    Article  PubMed  CAS  Google Scholar 

  41. Yoo YM, Lee CJ, Lee U, Kim YJ. Neuroprotection of adenoviral-vector-mediated GDNF expression against kainic-acid-induced excitotoxicity in the rat hippocampus. Exp Neurol206;200:407–17.

    Google Scholar 

  42. Kanter-Schlifke I, Georgievska B, Kirik D, Kokais M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther 2007;15:1106–3,2007.

    PubMed  CAS  Google Scholar 

  43. Perkins D, Pereira EF, Aurelian L, The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 2003;77:1292–305.

    Article  PubMed  CAS  Google Scholar 

  44. Laing JM, Gober MD, Golembewski EK, Thompson SM, Gyure KA, Yarowsky PJ, Aurelian L. Intranasal administration of the growth-compromised HSV-2 vector DeltaRR prevents kainate-induced seizure and neuronal loss in rats and mice. Mol Ther 2006;13:870–81.

    Article  PubMed  CAS  Google Scholar 

  45. Ango R, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 2001;411:962–5.

    Article  PubMed  CAS  Google Scholar 

  46. Klugman M, Symes CW, Leichtlein CB, Klaussner BK, Dunning J, Fong D, Young D, During MJ. AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol Cell Neurosci 2005;28:347–60.

    Article  Google Scholar 

  47. Yang J, Teng Q, Fererici T, Najm I, Chabardes S, Moffitt M, Alexopoulos A, Riley J, Boulis N. Viral clostridial light chain gene-based control of penicillin-induced neocortical seizures. Mol Ther 2007;15:542–51.

    Article  PubMed  CAS  Google Scholar 

  48. Dunwiddie RV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001;24:31–55.

    Article  PubMed  CAS  Google Scholar 

  49. Huber A, Padrun V, Deglon N, Aebischer P, Mohler H, Boison D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Nat Acad Sci U S A 2001;98:7611–16.

    Article  CAS  Google Scholar 

  50. Haberman RP, Samulski RJ, McCown TJ. Attenuation of seizures and neuronal death by adeno-associated virus (AAV) vector galanin expression and secretion. Nat Med 2003;9:1076–80.

    Article  PubMed  CAS  Google Scholar 

  51. McCown T J. Adeno-associated virus-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity in vivo. Mol Ther 2006;14:63–8.

    Article  PubMed  CAS  Google Scholar 

  52. Lin ED, Richichi C, Young D, Baer K, Vezzani A, During MJ. Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. J Neurosci 2003;18:2087–2003.

    Article  Google Scholar 

  53. Richichi C, Lin EJ, Stefanin D, Colella D, Ravizza T, Grignaschi G, Veglianese P, Sperk G, During MJ, Vezzani A. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci 2004;24:3051–9.

    Article  PubMed  CAS  Google Scholar 

  54. Foti S, Haberman RP, Samulski RJ, McCown TJ. Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 suppresses seizure activity in vivo. Gene Ther 2007;14:1534–6.

    Article  PubMed  CAS  Google Scholar 

  55. Marsh DJ, Baraban SC, Hollopeter G, Palmiter RD. Role of the Y5 neuropeptide Y receptor in limbic seizures. Proc Nat Acad Sci U S A. 1999;96:13518–23.

    Article  CAS  Google Scholar 

  56. Lin EJ, Young D, Baer K. Herzog H, During MJ. Differential actions of NPY on seizure modulation via Y1 and Y2 receptors: Evidence from receptor knockout mice. Epilepsia 2006;47:773–80.

    Article  PubMed  Google Scholar 

  57. Colmers WF, Klapstein GJ, Fournier A, St-Pierre S, Treherne KA. Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Br J Pharmacol 1991;102:41–4.

    PubMed  CAS  Google Scholar 

  58. Greber S, Schwarzer C, Sperk G. Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br J Pharmacol 1994;113:737–40.

    PubMed  CAS  Google Scholar 

  59. El Bahh B., Balosso S., Hamilton T., Herzog H., Beck-Sickinger A.G., Sperk G, Gehlert D.R., Vezzani A., Colmers W.F. The anti-epileptic actions of neuropeptide Y in the hippocampus are mediated by Y and not Y receptors. Eur J Neurosci 2005;22:1417–30.

    Article  PubMed  Google Scholar 

  60. Vezzani A, Moneta D, Mule F, Ravizza T, Gobbi M, French-Mullen J. Plastic changes in neuropeptide Y receptor subtypes in experimental models of limbic seizures. Epilepsia 2000;(Suppl.6):S115–21.

    Article  Google Scholar 

  61. Guttinger M, Fedele D, Koch P, Padrun V, Pralong WF, Brustle O, Boison D. Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia 2005;46:1162–9.

    Article  PubMed  Google Scholar 

  62. Seki T, Matsubayashi H, Amano T, Kitada K, Serkawa T, Sasa M, Sakai N. Adenoviral gene transfer of aspartoacylase ameliorates tonic convulsions of spontaneously epileptic rats. Neurochem Int 2004;45:171–8.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang LX, Li XL, Smith MA, Post RM, Han JS. Lipofectin-facilitated transfer of cholecystokinin gene corrects behavioral abnormalities of rats with audiogenic seizures. Neurosci 1997;77:15–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Foti, S.B., Russek, S.J., Brooks-Kayal, A.R., McCown, T.J. (2009). Viral Vector Gene Therapy for Epilepsy. In: Baraban, S. (eds) Animal Models of Epilepsy. Neuromethods, vol 40. Humana Press. https://doi.org/10.1007/978-1-60327-263-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-263-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-262-9

  • Online ISBN: 978-1-60327-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics