Skip to main content

Organotypic Hippocampal Slice Cultures as a Model of Limbic Epileptogenesis

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 40))

Abstract

Organotypic hippocampal slice cultures experience trauma, deafferentation due to cell loss or transection of afferent pathways, and neuronal circuitry rearrangements much like the events that can lead to acquired temporal lobe epilepsy. Organotypic hippocampal slice cultures can be maintained for months in vitro and exhibit a latent period followed by onset of electrographic seizures involving the dentate granule cells, which is a hallmark of epileptogenesis and acquired epilepsy in humans and in vivo animal models. The advantages of organotypic hippocampal slice cultures over in vivo models are that slice cultures exhibit a relatively short latent period and can be treated quickly and easily with a known concentration of reagent without unwanted systemic side effects. They are also more amenable to time-lapse studies and require fewer animals for drug screening and concentration–response analyses. Thus, the in vitro organotypic hippocampal slice culture model is an attractive alternative to in vivo models to begin to elucidate the molecular and cellular mechanisms underlying synaptic rearrangements and epileptogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McNamara JO, Bonhaus DW, Shin C. The kindling model of epilepsy. In: Schwartzkroin PA ed. Epilepsy: Models, Mechanisms, and Concepts. New York, NY: Cambridge University Press, 1993:27–47.

    Google Scholar 

  2. Turski WA, Cavalheiro EA, Schwarz M,Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983;9:315–335.

    Article  PubMed  CAS  Google Scholar 

  3. Nadler JV, Perry BW, Cotman CW. Selective reinnervation of hippocampal area CA1 after destruction of CA3-CA4 afferents with kainic acid. Brain Res 1980;182:1–9.

    Article  PubMed  CAS  Google Scholar 

  4. Pisa M, Sanberg PR, Corcoran ME, Fibiger HC. Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: a possible model of human temporal lobe epilepsy. Brain Res 1980;200:481–487.

    Article  PubMed  CAS  Google Scholar 

  5. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: Assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 1998;31:73–84.

    Article  PubMed  CAS  Google Scholar 

  6. Cavalheiro EA, Leite JP, Bortolotto ZA,Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991;32:778–782.

    Article  PubMed  CAS  Google Scholar 

  7. Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 1985;5:1016–1022.

    PubMed  CAS  Google Scholar 

  8. Sutula T, He X-X, Cavazos J, Scott G. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 1988;239:1147–1150.

    Article  PubMed  CAS  Google Scholar 

  9. Sutula T, Cascino G, Cavazos J, Parada I, Rameriz L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26:321–330.

    Article  PubMed  CAS  Google Scholar 

  10. Mello LEAM, Cavalheiro EA, Tan AM, Pretorius JK, Babb TL, Finch DM. Granule cell dispersion in relation to mossy fiber sprouting, hippocampal cell loss, silent period and seizure frequency in the pilocarpine model of temporal lobe epilepsy. In: Engel J Jr, Wasterlain C, Cavalheiro EA, Heinemann U, Avanzini G, ed. Molecular Neurobiology of Epilepsy, Epilepsy Res (Suppl 9). BV: Elsevier, 1992:51–60.

    Google Scholar 

  11. Wuarin J-P, Dudek FE. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci 1996;16:4438–4448.

    PubMed  CAS  Google Scholar 

  12. Ben-Ari Y. Limbic seizure and brain damage by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985;14:375–403.

    Article  PubMed  CAS  Google Scholar 

  13. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsy. Synapse 1989;3:154–171.

    Article  PubMed  CAS  Google Scholar 

  14. Gähwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 1981;4:329–342.

    Article  PubMed  Google Scholar 

  15. Gähwiler BH. Development of the hippocampus in vitro: Cell types, synapses and receptors. Neuroscience 1984;11:751–760.

    Article  PubMed  Google Scholar 

  16. Gähwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures: A technique has come of age. Trends Neurosci 1997;20:471–477.

    Article  PubMed  Google Scholar 

  17. Del Rio JA, Heimrich B, Soriano E, Schwegler H, Frotscher M. Proliferation and differentiation of glial fibrillary acidic protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus. Neuroscience 1991;43:335–347.

    Article  PubMed  CAS  Google Scholar 

  18. Thompson SM, Mason SE. Preparation of organotypic hippocampal slice cultures. In: Celis JE, ed. Cell Biology: A Laboratory Handbook, 3rd ed. Amsterdam: Elsevier, 2004.

    Google Scholar 

  19. Stoppini L, Buchs P-A, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991;37:173–182.

    Article  PubMed  CAS  Google Scholar 

  20. Gähwiler BH. Organotypic cultures of neural tissue. Trends Neurosci 1988;11:484–489.

    Article  PubMed  Google Scholar 

  21. Xiang Z, Hrabetova S, Moskowitz SI, Casaccia-Bonnefil P, Young SR, Nimmrich VC, Tiedge H, Einheber S, Karnup S, Bianchi R, Bergold PJ. Long-term maintenance of mature hippocampal slices in vitro. J Neurosci Methods 2000;98:145–154.

    Article  PubMed  CAS  Google Scholar 

  22. Bausch SB, McNamara JO. Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures. J Neurophysiol 2000;84:2918–2932.

    PubMed  CAS  Google Scholar 

  23. Gogolla N, Galimberti I, DePaola V, Caroni P. Long-term live imaging of neuronal circuits in organotypic hippocampal slice cultures. Nat Protoc 2006;1:1223–1226.

    Article  PubMed  CAS  Google Scholar 

  24. Zimmer J, Gahwiler BH. Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata. J Comp Neurol 1984;228:432–446.

    Article  PubMed  CAS  Google Scholar 

  25. Caeser M, Aertsen AD. Morphological organization of rat hippocampal slice cultures. J Comp Neurol 1991;307:87–106.

    Article  PubMed  CAS  Google Scholar 

  26. Frotscher M, Heimrich B. Formation of layer-specific fiber projections to the hippocampus in vitro. Proc Natl Acad Sci U S A 1993;90:10499–10403.

    Article  Google Scholar 

  27. Dailey ME, Buchanan J, Bergles DE, Smith SJ. Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro.J Neurosci 1994;14:1060–1078.

    PubMed  CAS  Google Scholar 

  28. Frotscher M, Heimrich B, Deller T.Sprouting in the hippocampus is layer-specific. Trends Neurosci 1997;20:218–223.

    Article  PubMed  CAS  Google Scholar 

  29. Raineteau O, Rietschin L, Gradwohl G, Guillemot F, Gähwiler BH. Neurogenesis in hippocampal slice cultures. Mol Cell Neurosci 2004;26:241–250.

    Article  PubMed  CAS  Google Scholar 

  30. Kamada M, Li R-Y, Hashimoto M, Okada H, Koyanagi Y, Ishizuka T, Yawo H. Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. Eur J Neurosci 2004;20:2499–2508.

    Article  PubMed  Google Scholar 

  31. Hailer NP, Jarhult JD, Nitsch R. Resting microglial cells in vitro: Analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 1996;18:319–331.

    Article  PubMed  CAS  Google Scholar 

  32. Skibo GG, Nikonenko IR, Savchenko VL, Mckanna JA. Microglia in organotypic hippocampal slice culture and effects of hypoxia: Ultrastructure and lipocortin-1 immunoreactivity. Neuroscience 2000; 96:427–438.

    Article  PubMed  CAS  Google Scholar 

  33. Muller D, Buchs P-A, Stoppini L. Time course of synaptic development in hippocampal organotypic cultures. Dev Brain Res 1993;71:93–100.

    Article  CAS  Google Scholar 

  34. Bahr BA. Long-term hippocampal slices: A model system for investigating synaptic mechanisms and pathologic processes.J Neurosci Res 1995;42:294–305.

    Article  PubMed  CAS  Google Scholar 

  35. Frotscher M, Zafirov S, Heimrich B. Development of identified neuronal types and of specific synaptic connections in slice cultures of rat hippocampus. Prog Neurobiol 1995;45:143–164.

    Article  PubMed  CAS  Google Scholar 

  36. De Simoni A, Griesinger CB, Edwards FA.Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J. Physiol 2003;550:135–147.

    Article  PubMed  CAS  Google Scholar 

  37. Wenzel HJ, Tamse CT, Schwartzkroin PA. Dentate development in organotypic hippocampal slice cultures from p35 knockout mice. Dev Neurosci 2007;29:99–112.

    Google Scholar 

  38. Pavlidis P, Madison DV. Synaptic transmission in pair recordings from CA3 pyramidal cells in organotypic culture. J Neurophysiol 1999;81:2787–2797.

    PubMed  CAS  Google Scholar 

  39. Frotscher M, Gahwiler BH. Synaptic organization of intracellularly stained CA3 pyramidal neurons in slice cultures of rat hippocampus. Neuroscience 1988;24:541–551.

    Article  PubMed  CAS  Google Scholar 

  40. Routbort MJ, Bausch SB, McNamara JO. Seizures, cell death and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Neuroscience 1999;94:755–765.

    Article  PubMed  CAS  Google Scholar 

  41. Coltman BW, Earkey EM, Shahar A, Dudek FE, Ide CF. Factors influencing mossy fiber collateral sprouting in organotypic slice cultures of neonatal mouse hippocampus. J Comp Neurol 1995;362:209–222.

    Article  PubMed  CAS  Google Scholar 

  42. Teter B, Harris-White ME, Frautschy SA, Cole GM. Role of apolipoprotein E and estrogen in mossy fiber sprouting in hippocampal slice cultures. Neuroscience 1999;91:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  43. Bausch SB, McNamara JO.Contributions of mossy fiber and CA1 pyramidal cell sprouting to dentate granule cell hyperexcitability in kainic acid-treated hippocampal slice cultures. J Neurophysiol 2004;92:3582–3595.

    Article  PubMed  CAS  Google Scholar 

  44. Gutierrez R, Heinemann U.Synaptic reorganization in explanted cultures of rat hippocampus. Brain Res 1999;815:304–316.

    Article  PubMed  CAS  Google Scholar 

  45. Fowler J, Bornstein MB, Crain SM. Sustained hyperexcitability elicited by repetitive electrical stimulation of organotypic hippocampal explants. Brain Res 1986;378:398–404.

    Article  PubMed  CAS  Google Scholar 

  46. McBain CJ, Boden P, Hill RG. The kainate/quisqualate receptor antagonist, CNQX, blocks the fast component of spontaneous epileptiform activity in organotypic cultures of rat hippocampus. Neurosci Lett 1988;93:341–345.

    Article  PubMed  CAS  Google Scholar 

  47. McBain CJ, Boden P, Hill RG. Rat hippocampal slices ‘in vitro’ display spontaneous epileptiform activity following long-term organotypic culture. J Neurosci Methods 1989;27:35–49.

    Article  PubMed  CAS  Google Scholar 

  48. Malouf AT, Robbins CA, Schwartzkroin PA. Epileptiform activity in hippocampal slice cultures with normal inhibitory drive. Neurosci Lett 1990;108:76–80.

    Article  PubMed  CAS  Google Scholar 

  49. Scanziani M, Debanne D, Muller M, Gahwiler BH, Thompson SM. Role of excitatory amino acid and GABAA receptors in the generation of epileptiform activity in disinhibited hippocampal slice cultures. Neuroscience 1994;61:823–834.

    Article  PubMed  CAS  Google Scholar 

  50. Wang X-M, Bausch SB. Differential effects of distinct classes ofN-methyl-D-aspartate receptor antagonists on dentate granule cell seizures, neuronal loss and mossy fiber sprouting in vitro: suppression by NR2B-selective antagonists. Neuropharmacology 2004;47:1008–1020.

    Article  PubMed  CAS  Google Scholar 

  51. Bausch SB, He S-J, Petrova Y, Wang X-M, McNamara JO. Plasticity of both excitatory and inhibitory synapses is associated with seizures induced by removal of chronic blockade of activity in cultured hippocampus. J Neurophysiol 2006;96:2151–2167.

    Article  PubMed  CAS  Google Scholar 

  52. Cronin J, Obenaus A, Houser C, Dudek FE. Electrophysiology in dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res 1992;573:305–310.

    Article  PubMed  CAS  Google Scholar 

  53. Masukawa LM, Uruno K, Sperling M, O’Connor MJ, Burdette LJ. The functional relationship between antidromically evoked field potential responses of the dentate gyrus and mossy fiber reorganization in temporal lobe epileptic patients. Brain Res 1992;579:119–127.

    Article  PubMed  CAS  Google Scholar 

  54. Franck JE, Pokorny J, Kunkel DD, Schwartzkroin PA.Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 1995;36:543–558.

    Article  PubMed  CAS  Google Scholar 

  55. Patrylo PR, Dudek FE. Physiological unmasking of new glutamatergic pathways in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats. J Neurophysiol 1998;79:418–429.

    PubMed  CAS  Google Scholar 

  56. Okazaki MM, Molnar P, Nadler JV. Recurrent mossy fiber pathway in rat dentate gyrus: Synaptic currents evoked in the presence and absence of seizure-induced growth. J Neurophysiol 1999;81:1645–1660.

    PubMed  CAS  Google Scholar 

  57. Stoppini L, Buchs PA, Muller D. Lesion-induced neurite sprouting and synapse formation in hippocampal organotypic cultures. Neuroscience 1993;57:985–994.

    Article  PubMed  CAS  Google Scholar 

  58. McKinney RA, Debanne D, Gähwiler BH, Thompson SM.Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. Nat Med 1997;3:990–996.

    Article  PubMed  CAS  Google Scholar 

  59. Laurberg S, Zimmer J. Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats. J Comp Neurol 1981;200:433–459.

    Article  PubMed  CAS  Google Scholar 

  60. de Lanerolle, NC, Kim, JH, Robbins, RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:387–395.

    Article  PubMed  Google Scholar 

  61. Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990;10:267–282.

    PubMed  CAS  Google Scholar 

  62. Ribak CE, Peterson GM. Intragranular mossy fibers in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus. Hippocampus 1991;1:355–364.

    Article  PubMed  CAS  Google Scholar 

  63. Represa A, Jorquera I, Le Gal La Salle G, Ben-Ari Y. Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites? Hippocampus 1993;3:257–268.

    Article  PubMed  CAS  Google Scholar 

  64. Okazaki MM, Evenson DA, Nadler JV. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: Visualization after retrograde transport of biocytin. J Comp Neurol 1995;352:515–534.

    Article  PubMed  CAS  Google Scholar 

  65. Molnar P, Nadler JV. Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studies with minimal laser photostimulation. J Neurophysiol 1999;82:1883–1894.

    PubMed  CAS  Google Scholar 

  66. Perez Y, Morin F, Beaulieu C, Lacaille JC. Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats. Eur J Neurosci 1996;8:736–748.

    Article  PubMed  CAS  Google Scholar 

  67. Esclapez M, Hirsch JC, Ben-Ari Y, Bernard C. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol 1999;408:449–460.

    Article  PubMed  CAS  Google Scholar 

  68. Rao A, Craig AM. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 1997;19:801–812.

    Article  PubMed  CAS  Google Scholar 

  69. O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 1998;21:1067–1078.

    Article  PubMed  Google Scholar 

  70. Niesen CE, Ge S. Chronic epilepsy in developing hippocampal neurons: Electrophysiological and morphological features. Dev Neurosci 1999;21:328–338.

    Article  PubMed  CAS  Google Scholar 

  71. Murthy VN, Schikorski T, Stevens CF, Zhu Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 2001;32:673–682.

    Article  PubMed  CAS  Google Scholar 

  72. Burrone J, O’Byrne M, Murthy VN. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 2002;420:414–418.

    Article  PubMed  CAS  Google Scholar 

  73. Buckby LE, Jensen TP, Smith PJ, Empson RM. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures. Mol Cell Neurosci 2006;31:805–816.

    Article  PubMed  CAS  Google Scholar 

  74. Swanwick CC, Murthy NR, Kapur J. Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol Cell Neurosci 2006;31:481–492.

    Article  PubMed  CAS  Google Scholar 

  75. Cai X, Wei D-S, Gallagher SE, Bagal A, Mei Y-A, Kao JPY, Thompson SM, Tang C-M. Hyperexcitability of distal dendrites in hippocampal pyramidal cells after chronic partial deafferentation. J Neurosci 2007;27:59–68.

    Article  PubMed  CAS  Google Scholar 

  76. Kellaway P. Introduction to plasticity and sensitive periods. In: Kellaway P, Noebels JL ed. Problems and Concepts in Developmental Neurophysiology. London: The Johns Hopkins UP, 1989:3–28.

    Google Scholar 

  77. Pierson MG, Swann JW. The sensitive period and optimum dosage for induction of audiogenic seizure susceptibility by kanamycin in the Wistar rat. Hear Res 1988;32:1–10.

    Article  PubMed  CAS  Google Scholar 

  78. Galvan CD, Hrachovy RA, Smith KL, Swann JW. Blockade of neuronal activity during hippocampal development produces a chronic focal epilepsy in the rat. J Neurosci 2000;20:2904–2916.

    PubMed  CAS  Google Scholar 

  79. White HS, Smith-Yockman M, Srivastava A, Wilcox KS. Therapeutic assays for the identification and characterization of antiepileptic and antiepileptogenic drugs. In: Pitkanen A, Schwartzkroin PA, Moshe SL, ed. Models of Seizures and Epilepsy. London:Elsevier,2006:539–549.

    Google Scholar 

  80. Penry JK, White BG, Brackett CE.A controlled prospective study of the pharmacologic prophylaxis of posttraumatic epilepsy. Neurology 1979;29:600–601.

    Google Scholar 

  81. Young B, Rapp RP, Norton JA, Haack D, Tibbs PA, Bean JR. Failure of prophylactically administered phenytoin to prevent late posttraumatic seizures. J Neurosurg 1983;58:236–241.

    Article  PubMed  CAS  Google Scholar 

  82. Glotzner FL, Haubitz I, Miltner F, Kapp G, Pflughaupt KW. Seizure prevention using carbamazepine following severe brain injuries. Neurochirurgia 1983;26:66–79.

    Google Scholar 

  83. Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med 1990;323:497–502.

    Article  PubMed  CAS  Google Scholar 

  84. Schierhout G, Roberts I.Prophylactic antiepileptic agents after head injury: A systematic review. J Neurol Neurosurg Psychiatry 1998;64:108–112.

    Article  PubMed  CAS  Google Scholar 

  85. McNamara JO, Yeh G, Bonhaus DW, Okazaki M, Nadler JV. NMDA receptor plasticity in the kindling model. In: Ben-Ari Y ed. Excitatory Amino Acids and Neuronal Plasticity, New York, NY: Plenum Press,1990:451–459.

    Google Scholar 

  86. Dingledine R, McBain CJ, McNamara JO. Excitatory amino acid receptors in epilepsy. Trends Pharmacol Sci 1990;11:334–338.

    Article  PubMed  CAS  Google Scholar 

  87. Sutula T. Reactive changes in epilepsy: Cell death and axon sprouting induced by kindling. Epilepsy Res 1991;10:62–70.

    Article  PubMed  CAS  Google Scholar 

  88. Meldrum BS.The role of glutamate in epilepsy and other CNS disorders. Neurology 1994;44:S14–23.

    PubMed  CAS  Google Scholar 

  89. Sutula T, Koch J, Golarai G, Watanabe Y, McNamara JO. NMDA receptor dependence of kindling and mossy fiber sprouting: Evidence that the NMDA receptor regulates patterning of hippocampal circuits in the adult brain. J Neurosci 1996;16:7398–7406.

    PubMed  CAS  Google Scholar 

  90. Loscher W. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 1998;54:721–741.

    Article  PubMed  CAS  Google Scholar 

  91. Rice AC, DeLorenzo RJ. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res 1998;82:240–247.

    Article  Google Scholar 

  92. Sveinbjornsdottir S, Sander JWAS, Upton D, Thompson PJ, Patsalos PN, Hirt D, Emre M, Lowe D, Duncan JS. The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 1993;16:165–174.

    Article  PubMed  CAS  Google Scholar 

  93. Poulsen FR, Jahnsen H, Blaabjerg M, Zimmer J. Pilocarpine-induced seizure-like activity with increased BDNF and neuropeptide Y expression in organotypic hippocampal slice cultures. Brain Res 2002;950:103–118.

    Article  PubMed  CAS  Google Scholar 

  94. Thomas AM, Corona-Morales AA, Ferraguti F, Capogna M. Sprouting of mossy fibers and presynaptic inhibition by group II metabotropic glutamate receptors in pilocarpine-treated rat hippocampal slice cultures. Neuroscience 2005;131:303–320.

    Article  PubMed  CAS  Google Scholar 

  95. Smith BN, Dudek FE. Short- and long-term changes in CA1 network excitability after kainate treatment in rats. J Neurophysiol 2001;85:1–9.

    PubMed  CAS  Google Scholar 

  96. Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 2002;22:6650–6658.

    PubMed  CAS  Google Scholar 

  97. Hechler D, Nitsch R, Hendrix S. Green-fluorescent-protein-expressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 2006;52:160–169.

    Article  PubMed  CAS  Google Scholar 

  98. Del Turco D, Deller T. Organotypic entorhino-hippocampal slice cultures – A tool to study the molecular and cellular regulation of axonal regeneration and collateral sprouting in vitro. Methods Mol Biol 2007;399:55–66.

    Article  PubMed  CAS  Google Scholar 

  99. Arrufo A, Stamenkovic I, Melnick M, Underhill SB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990;61:1301–1313.

    Google Scholar 

  100. Pure E, Cuff CA.A crucial role for CD44 in inflammation. Trends Mol Med 2001;7:213–221.

    Article  PubMed  CAS  Google Scholar 

  101. Underhill C.CD-44 – the hyaluronan receptor. J Cell Sci 1992;103:293–298.

    PubMed  CAS  Google Scholar 

  102. Lin L, Chan SO. Perturbation of CD44 function affects chiasmatic routing of retinal axons in brain slice preparations of the mouse retinofungal pathway. Eur J Neurosci 2003;17:2299–2312.

    Article  PubMed  Google Scholar 

  103. Stretavan DW, Feng L, Pure E, Reichardt LF. Embryonic neurons of the developing optic chiasm express L1 and CD44 cell surface molecules with opposing effects on retinal axon outgrowth. Neuron 1994;12:957–975.

    Article  Google Scholar 

  104. Ponta H, Sherman L, Herrlich PA. CD44: From adhesion molecules to signaling regulators.Nature Rev Mol Cell Biol 2003;4:33–45.

    Article  CAS  Google Scholar 

  105. Perosa SR, Porcionatto MA, Cukiert A, Martins JR, Passerott CC, Amado D, Matas SLA, Nader HB, Cavalheiro EA, Leite JP, Naffah-Mazzacoratti MG. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res Bull 2002;58:509–516.

    Article  PubMed  CAS  Google Scholar 

  106. Perosa SR, Porcionatto MA, Cukiert A, Martins JR, Amado D, Nader HB, Cavalheiro EA, Leite JP, Naffah-Mazzacoratti MG. Extracellular matrix components are altered in the hippocampus, cortex and cerebrospinal fluid of patients with mesial temporal lobe epilepsy. Epilepsia 2002;43(Suppl 5):159–161.

    Article  PubMed  CAS  Google Scholar 

  107. Borges K, McDermott DL, Dingledine R. Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice. Exp Neurol 2004;188:1–10.

    Article  PubMed  CAS  Google Scholar 

  108. Bausch SB. Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures. Neuroscience 2006;143:339–350.

    Article  PubMed  CAS  Google Scholar 

  109. Binder DK, Croll SD, Gall CM, Scharfman HE.BDNF and epilepsy: Too much of a good thing?Trends Neurosci 2001;24:47–53.

    Article  PubMed  CAS  Google Scholar 

  110. Kokaia M, Ernfors P, Kokaia Z, Elmer E, Jaenisch R, Lindvall O. Suppressed epileptogenesis in BDNF mutant mice. Exp Neurol 1995;133:215–224.

    Article  PubMed  CAS  Google Scholar 

  111. Qiao X, Suri C, Knusel B, Noebels JL. Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor. J Neurosci Res 2001;64:268–276.

    Article  PubMed  CAS  Google Scholar 

  112. Shetty AK, Zaman V, Shetty GA. Hippocampal neurotrophin levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J Neurochem 2003;87:147–159.

    Article  PubMed  CAS  Google Scholar 

  113. Danzer SC, Crooks KR, Lo DC, McNamra JO. Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J Neurosci 2002;22:9754–9763.

    PubMed  CAS  Google Scholar 

  114. Koyama R, Yamada MK, Fujisawa S, Katoh-Semba R, Matsuki N, Ikegaya Y. Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus. J. Neurosci 2004;24:7215–7224.

    Article  PubMed  CAS  Google Scholar 

  115. Dinocourt C, Gallagher SE, Thompson SM. Injury-induced axonal sprouting in the hippocampus is initiated by activation of trkB receptors. Eur J Neurosci 2006;24:1857–1866.

    Article  PubMed  Google Scholar 

  116. Bender R, Heimrich B, Meyer M, Frotscher M.Hippocampal mossy fiber sprouting is not impaired in brain-derived neurotrophic factor-deficient mice. Exp Brain Res 1998;120:399–402.

    Article  PubMed  CAS  Google Scholar 

  117. Nestor MW, Mok LP, Tulapurkar ME, Thompson SM. Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J Neurosci 2007;27:12817–12828.

    Article  PubMed  CAS  Google Scholar 

  118. Noraberg J, Jensen CV, Bonde C, Montero M, Nielsen JV, Jensen NA, Zimmer J. The developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice and its use in the determination of excitotoxic neurodegeneration. Altern Lab Anim 2007;35:61–70.

    PubMed  CAS  Google Scholar 

  119. Lo DC, McAllister AK, Katz LC. Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 1994;13:1263–1268.

    Article  PubMed  CAS  Google Scholar 

  120. Benediktsson AM, Schachtele SJ, Green SH, Dailey ME. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 2005;141:41–53.

    Article  PubMed  Google Scholar 

  121. Yu JY, Wang TW, Vojtek AB, Parent JM, Turner DL.Use of short hairpin RNA expression vectors to study mammalian neural development. Methods Enzymol 2005;392:186–199.

    Article  PubMed  CAS  Google Scholar 

  122. Haas K, Sin WC, Javaherian A, Li Z, Cline HT. Single-cell electroporation for gene transfer in vivo. Neuron 2001;29:583–591.

    Article  PubMed  CAS  Google Scholar 

  123. Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, SchlesingerS, Gähwiler BH. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci U S A 1999;96:7041–7046.

    Article  PubMed  CAS  Google Scholar 

  124. Gober MD, Laing JM, Thompson SM, Aurelian L. The growth compromised HSV-2 mutant DeltaRR prevents kainic acid-induced apoptosis and loss of function in organotypic hippocampal cultures. Brain Res 2006;1119:26–39.

    Article  PubMed  CAS  Google Scholar 

  125. Stoppini L, Duport S, Corrèges P. A new extracellular multirecording system for electrophysiological studies: Application to hippocampal organotypic cultures. J Neurosci Methods 1997;72:23–33.

    Article  PubMed  CAS  Google Scholar 

  126. Karpiak VC, Plenz D. Preparation and maintenance of organotypic cultures for multi-electrode array recordings. Curr Protoc Neurosci 2002;Chapter 6:Unit 6.15.

    Google Scholar 

  127. van Bergen A, Papanikolaou T, Schuker A, Möller A, Schlosshauer B. Long-term stimulation of mouse hippocampal slice culture on microelectrode array. Brain Res Brain Res Protoc 2003;11:123–133

    Article  PubMed  CAS  Google Scholar 

  128. Hofmann F, Bading H. Long term recordings with microelectrode arrays: Studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris 2006;99:125–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Natalie White for assistance. Work was funded by the Congressionally Directed Medical Research Program and National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bausch, S.B. (2009). Organotypic Hippocampal Slice Cultures as a Model of Limbic Epileptogenesis. In: Baraban, S. (eds) Animal Models of Epilepsy. Neuromethods, vol 40. Humana Press. https://doi.org/10.1007/978-1-60327-263-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-263-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-262-9

  • Online ISBN: 978-1-60327-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics