Skip to main content

Boronate Affinity Chromatography

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 147))

Abstract

The use of boronate affinity chromatography for separation of nucleic acid components and carbohydrates was first reported by Weith and colleagues in 1970 (1). Since then, the specificity of boronate has been exploited for the separation of a wide variety of cis-diol-containing compounds, including catechols, nucleosides, nucleotides, nucleic acids, carbohydrates, glycoproteins, and enzymes (2) (see Note 1). The basic interaction for boronate chromatography is esterification between boronate ligands and cis-diols. The major structural requirement for boronate/cis-diol esterification is that the two hydroxyl groups of a diol should be on adjacent carbon atoms and in an approximately coplanar configuration, that is, a 1,2-cis-diol. Although interaction of boronate with 1,3-cis-diols and trident interactions with cis-inositol or triethanolamine can also occur, 1,2-cis-diols give the strongest boronate ester bonds (3). In aqueous solution, under basic conditions, boronate, which normally has a trigonal coplanar geometry, is hydroxylated, yielding a tetrahedral boronate anion, which can then form esters with cis-diols (Fig. 1). The resulting cyclic diester can be hydrolyzed under acidic conditions, reversing the reaction. The boronate diester bond strength has not been well studied and only a few dissociation constants for phenylboronic acid diesters have been reported. Those reported include adonitol, 2.2 × 10-3 M; dulcitol, 1.1 × 10-3 M (4); mannitol, 3.3 × 10-3 M (5); and NADH, 5.9 × 10-3 M (6). The dissociation constant of 4-(N-methyl)-carboxamido-benzeneboronic acid and D-fructose diester is 1.2 × 10-4 M (7). These dissociation constants are relatively high compared to the constants of 10-4–10-8M observed in most affinity ligand/protein interactions.

The proposed mechanism of esterification between a phenylboronic acid and a cis-diol in aqueous solution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weith H. L., Wiebers J. L. and Gilham P. T. (1970) Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochemistry, 9, 4396–4401.

    Article  PubMed  CAS  Google Scholar 

  2. Bergold A., and Scouten W. H. (1983) Borate chromatography, in Solid Phase Biochemistry, (Scouten W. H., ed.), Wiley, New York, pp. 149–187.

    Google Scholar 

  3. Ferrier R. J. (1978) Carbohydrate boronates. Adv. Carb. Chem. Biochem. 35, 31–80.

    Article  CAS  Google Scholar 

  4. Evans W., McCourtney E., and Carney W. (1979) A comparative analysis of the interaction of borate ion with various polyols. Anal. Biochem. 95, 383–386.

    Article  PubMed  CAS  Google Scholar 

  5. Zittle C. (1951) Reaction of borate with substances of biological interest. Advan. Enzym. 12, 493–502.

    CAS  Google Scholar 

  6. Fulton S. (1981) Boronate Ligands in Biochemical Separations, Amicon Corp., Danvers, MA.

    Google Scholar 

  7. Soundararajan S., Badawi M., Kohlrust C. M., and Hageman J. (1989) Boronic acids for affinity chromatography: spectral methods for determinations of ionization and diol-binding constants. Anal. Biochem. 178, 125–134.

    Article  PubMed  CAS  Google Scholar 

  8. Liu X.-C. and Scouten W. H. (1994) New ligands for boronate affinity chromatography. J. Chromatogr. A 687, 61–69.

    Article  CAS  Google Scholar 

  9. Singhal R. P., Ramamurthy B., Govindraj N., and Sarwar Y. (1991) New ligands for boronate affinity chromatography. Synthesis and properties. J. Chromatogr. 543, 17–38.

    Article  CAS  Google Scholar 

  10. Bourne E. J., Lees E. M., and Weigel H. (1963) Paper chromatography of carbohydrates and related compounds in the presence of benzeneboronic acid. J. Chromatogr. 11, 253–257.

    Article  PubMed  CAS  Google Scholar 

  11. Schott H. (1972) New dihydroxyboryl-substituted polymers for column-chro-matographic separation of ribonucleoside-deoxyribonucleoside mixtures. Angew. Chem. Int. Ed. Engl. 11, 824–825.

    Article  PubMed  CAS  Google Scholar 

  12. Glad M., Ohlson S., Hansson L., Mansson M., and Mosback K. (1980) High-performance liquid affinity chromatography of nucleosides, nucleotides and carbohydrates with boronic acid-substituted microparticulate silica. J. Chromatogr. 200, 254–260.

    Article  CAS  Google Scholar 

  13. Gascon A., Wood T., and Chitemerese L. (1981) The separation of isomeric pentose phosphates from each other and the preparation of D-xylulose 5-phosphate and D-ribulose 5-phosphate by column chromatography. Anal. Biochem. 118, 4–9.

    Article  PubMed  CAS  Google Scholar 

  14. Wulff G. and Vesper W. (1978) Preparation of chromatographic sorbents with chiral cavities for racemic resolution. J. Chromatogr. 167, 171–186.

    Article  CAS  Google Scholar 

  15. Schott H., Rudloff E., Schmidt P., Roychoudhury R., and Kossel H. (1973) A dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry 12, 932–938.

    Article  PubMed  CAS  Google Scholar 

  16. Ackerman S., Cool B., and Furth J. (1979) Removal of DNA from RNA by chromatography on acetylated N-[N’-(m-dihydroxylborylphenyl)succinamyl]-aminoethyl cellulose. Anal. Biochem. 100, 174–178.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg M. and Gilham P. T. (1971) Isolation of 3’-terminal polynucleotides from RNA molecules. Biochem. Biophys. Acta 246, 337–340.

    PubMed  CAS  Google Scholar 

  18. Wilk H. E., Kecskemethy N., and Schaefer K. P. (1982) m-Aminophenyl-boronate agarose specifically binds capped snRNA and mRNA. Nucleic Acids Res. 10, 7621–7633.

    Article  PubMed  CAS  Google Scholar 

  19. Rosenberg M., Wiebers J., and Gilham P. T. (1972) Studies on the interactions of nucleotides, polynucleotides, and nucleic acids with dihydroxylboryl-substi-tuted cellulose. Biochemistry 11, 3623–3628.

    Article  PubMed  CAS  Google Scholar 

  20. Van Ness B., Howard J. and Bodley J. (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. J. Biol. Chem. 255, 10,717–10,720.

    PubMed  Google Scholar 

  21. Herold C. D., Andree K., Herold D. A., and Felder R. A. (1993) Robotic chromatography: development and evaluation of automated instrumentation for assay of glycohemoglobin. Clin. Chem. 39, 143–147.

    PubMed  CAS  Google Scholar 

  22. Bisse E., and Wieland H. (1992) Coupling of m-aminophenylboronic acid to striazine-activated Sephacryl: use in the affinity chromatography of glycated hemoglobins. J. Chromatogr. 575, 223–228.

    Article  PubMed  CAS  Google Scholar 

  23. Hjerten S., and Li J. (1990) High-performance liquid chromatography of proteins on deformed non-porous agarose beads. J. Chromatogr. 500, 543–553.

    Article  PubMed  CAS  Google Scholar 

  24. Klenk D. C., Hermanson G. T., Krohn R. I., Fujimoto E. K., Malia A. K., Smith P. K., England J. D., Wiedmeyer H. M., Little R. R., and Goldstein D. E. (1982) Determination of glycosylated hemoglobin by affinity chromatography: comparison with colorimetric and ion-exchange methods, and effects of common interferences. Clin. Chem. 28, 2088–2094.

    PubMed  CAS  Google Scholar 

  25. Gould B. J., Hall P. M., and Cook G. H. (1982) Measurement of glycosylated hemoglobins using an affinity chromatography method. Clin. Chim. Acta. 125, 41–48.

    Article  PubMed  CAS  Google Scholar 

  26. Kluckiger R., Woodtli T., and Berger W. (1984) Quantitation of glycosylated hemoglobin by boronate affinity chromatography. Diabetes 33, 73–76.

    Article  Google Scholar 

  27. Brena B. M., Batista-Viera F., Ryden L., Porath J. (1992) Selective adsorption of immunoglobulins and glycosylated proteins on phenylboronate-agarose. J. Chromatogr. 604, 109–115.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto T., Amuro Y., Matsuda Y., Nakaoka H., Shimomura S., Hada T., and Higashino K. (1991) Boronate affinity chromatography of gammaglutamyltransferase in patients with hepatocellular carcinoma. Am. J. Gastroenterol. 86, 495–499.

    PubMed  CAS  Google Scholar 

  29. DeCristofaro R., Landolfi R., Bizzi B. and Castagnola M. (1988) Human platelet glycocalicin purification by phenyl boronate affinity chromatography coupled to anionexchange high-performance liquid chromatography. J. Chromatogr. 426, 376–380.

    Article  CAS  Google Scholar 

  30. Myohanen T. A., Bouriotis V., and Dean P. D. G. (1981) Affinity chromatography of yeast alpha-glucosidase using ligand-mediated chromatography on immobilized phenylboronic acids. Biochem. J. 197, 683–688.

    PubMed  CAS  Google Scholar 

  31. Hawkins C. J., Lavin M. F., Parry D. L., and Ross I. L. (1986) Isolation of 3,4-dihydroxyphenylalanine-containing proteins using boronate affinity chromatography. Anal. Biochem. 159, 187–190.

    Article  PubMed  CAS  Google Scholar 

  32. Williams G. T., Johnstone A. P., and Dean P. D. G. (1982) Fractionation of membrane proteins on phenylboronic acid-agarose. Biochem. J. 205, 167–171.

    PubMed  CAS  Google Scholar 

  33. Matthews D., Alden R., Birktoft J., Freer S., and Kraut J. (1975) X-ray crystallographic study of boronic acid adducts with subtilisin BPN’ (Novo). J. Biol. Chem. 250, 7120–7126.

    PubMed  CAS  Google Scholar 

  34. Garner C. W. (1980) Boronic acid inhibitors of porcine pancreatic lipase. J. Biol. Chem. 255, 5064–5068.

    PubMed  CAS  Google Scholar 

  35. Akparov V., and Stepanov V. (1978) Phenylboronic acid as a ligand for biospecific chromatography of serine proteinses. J. Chromatogr. 155, 329–336.

    Article  PubMed  CAS  Google Scholar 

  36. Zembower D. E.; Neudauer C. L.; Wick M. J.; Ames M. M. (1996) Versatile synthetic ligands for affinity chromatography of serine proteinases. Int. J. Pept. Protein Res. 47, 405–413.

    Article  PubMed  CAS  Google Scholar 

  37. Bouriotis V., Galpin I. J., and Dean P. D. G. (1981) Applications of immobilized phenylboronic acids as supports for group-specific ligands in the affinity chromatography of enzymes. J. Chromatogr. 210, 267–278.

    Article  CAS  Google Scholar 

  38. Maestas R., Prieto J., Duehn G., and Hageman J. (1980) Polyacrylamideboronate beads saturated with biomolecules: a new general support for affinity chromatography of enzymes. J. Chromatogr. 189, 225–231.

    Article  CAS  Google Scholar 

  39. Hansson C., Agrup G., Rorsman H., Rosengren A., and Rosengren E. (1978) Chromatographic separation of catecholic amino acids and catecholamines on immobilized phenylboronic acid. J. Chromatogr. 161, 352–355.

    Article  CAS  Google Scholar 

  40. Elliger C., Chan B., and Stanley W. (1975) p-Vinylbenzeneboronic acid polymers for separation of vicinal diols. J. Chromatogr. 104, 57–61.

    Article  CAS  Google Scholar 

  41. Higa S., Suzuki T., Hayashi A., Tsuge I., and Yamamura Y. (1977) Isolation of catecholamines in biological fluids by boric acid gel. Anal. Biochem. 77, 18–24.

    Article  PubMed  CAS  Google Scholar 

  42. Higa S. and Kishimoto S. (1986) Isolation of 2-hydroxy carboxylic acids with a boronate affinity gel. Anal. Biochem. 154, 71–74.

    Article  PubMed  CAS  Google Scholar 

  43. Bongartz D. and Hesse A. (1995) Selective extraction of quercetrin in vegetable drugs and urine by off-line coupling of boronic acid affinity chromatography and high-performance liquid chromatography. J. Chromatogr. B 673, 223–30.

    Article  CAS  Google Scholar 

  44. Pis J. and Harmatha J. (1992) Phenylboronic acid as a versatile derivatization agent for chromatography of ecdysteroids. J. Chromatogr. 596, 271–275.

    Article  CAS  Google Scholar 

  45. Ugelstad J., Stenstad P., Kilaas L., Prestvik W. S., Rian A., Nustad K., Herje R. and Berge A. (1996) Biochemical and biomedical application of monodisperse polymer particles. Macromol. Symp. 101, 491–500.

    Article  CAS  Google Scholar 

  46. Frantzen F., Grimsrud K., Heggli D.-E., and Sundrehagen E. (1995) Proteinboronic acid conjugates and their binding to low-molecular-mass cis-diols and glycated hemoglobin. J. Chromatogr. B 670, 37–45.

    Article  CAS  Google Scholar 

  47. Lau H. H. S. and Baird W. M. (1994) Separation and characterization of postlabeled DNAadducts of stereoisomers of benzo[aα]pyrene-7,8-diol-9,10-epoxide by immobilized boronate chromatography and HPLC analysis. Carcinogenesis, 15, 907–915.

    Article  PubMed  CAS  Google Scholar 

  48. Wulff G. (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem., Int. Ed. Engl. 34, 1812–1832.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Liu, XC., Scouten, W.H. (2000). Boronate Affinity Chromatography. In: Bailon, P., Ehrlich, G.K., Fung, WJ., Berthold, W. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 147. Humana Press. https://doi.org/10.1007/978-1-60327-261-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-261-2_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-694-9

  • Online ISBN: 978-1-60327-261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics