Skip to main content

Manipulation of Photosynthetic Metabolism

  • Protocol
Book cover Recombinant Proteins from Plants

Part of the book series: Methods in Biotechnology ((MIBT,volume 3))

Abstract

Photosynthesis, as the basic process leading to biomass accumulation, is intrinsically limited by the performance of the photosynthetic apparatus under different environmental conditions. Potentially, substantial increases in crop yield and improved efficiency of production could be achieved by increasing leaf photosynthetic rates. An essential prerequisite to improving the efficiency of photosynthesis is an understanding of the individual steps involved, their regulation, and interactions with the external environment. Once potential targets have been identified, techniques enabling stable genetic transformation of important crop plants are available to make many of the specific changes we may require.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keys, A. J. (1983) Prospects for increasing photosynthesis by control of photorespiration. Pesticide Sci. 19, 313–316.

    Article  Google Scholar 

  2. Bainbridge, G., Madgwick, P. J., Parmar, S., Mitchell, R., Paul, M. J., Pitts, J., Keys, A. J., and Parry, M. A. J. (1995) Engineering Rubisco to change its catalytic properties. J. Exper. Bot. 46, 1269–1276.

    CAS  Google Scholar 

  3. Douwe de Boer, A., and Weisbeek P. J. (1991) Chloroplast protein topogenesis∶ import, sorting and assembly. Biochem. Biophys. Acta 1071, 221–253.

    PubMed  CAS  Google Scholar 

  4. Bauwe, H. (1984) Photosynthetic enzyme activities in C3 and C3–C4 intermediate species of Moricania and Panicum milioides. Photosynthetica 18, 201–209.

    CAS  Google Scholar 

  5. Viale A. M., Kobayashi H., and Akazawa T. (1990) Distinct properties of Escherichia coli products of plant-type Ribulose-1,5-bisphosphate carboxylase/oxygenase directed by two sets of genes from the photosynthetic bacterium Chromatium vinosum. J. Biol. Chem. 265, 18,386–18,392.

    PubMed  CAS  Google Scholar 

  6. Gutteridge, S. and Gatenby, A. A. (1995) Rubisco synthesis, assembly, mechanism and regulation. Plant Cell 7, 809–819.

    Article  PubMed  CAS  Google Scholar 

  7. Brangeon, J., Nato, A., and Forchioni, A. (1989) Ultrastructural detection of Rubisco and target mRNAs in wild type and holoenzyme-deficient Nicotiana using immunogold and in-situ hybridisation. Planta 177, 151–159.

    Article  CAS  Google Scholar 

  8. Svab, Z. and Maliga, P. (1993) High frequency plastid transformation in tobacco by selection for a chimaeric aadA gene. Proc. Nat. Acad. Sci. USA 90, 913–917.

    Article  PubMed  CAS  Google Scholar 

  9. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains-nucleotide-sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103–119.

    Article  PubMed  CAS  Google Scholar 

  10. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol 166, 557–580.

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., and Maniatis T. (1989) Molecular Cloning—A Laboratory Manual, 2nd ed. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY.

    Google Scholar 

  12. Robbins, M. P., Evans, T. E., Morris, P., and Carron, T. R. (1991) Some notes on the extraction of genomic DNA from transgenic Lotus. Lotus Newsletter 22, 18–21.

    Google Scholar 

  13. Gallois, P. and Marinho, P. (1995) Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco, in Methods in Molecular Biology, vol. 49∶ Plant Gene Transfer and Expression Protocols (Jones, H., ed.), Humana, Totowa, NJ, pp. 39–48.

    Google Scholar 

  14. Ougham, H. J. and Davies, T. G. E. (1990) Leaf development in Lolium temulentum∶ gradients of RNA complement plastid and non-plastid transcripts. Physiol. Plantarum 79, 331–338.

    Article  CAS  Google Scholar 

  15. Yokota, A. and Canvin, D. T. (1985) Ribulose bisphosphate carboxylase/oxygenase content determined with (14C) Carboxypentitol bisphosphate in plants and algae. Plant Physiol. 77, 735–739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Parry, M.A.J., Colliver, S.P., Madgwick, P.J., Paul, M.J. (1998). Manipulation of Photosynthetic Metabolism. In: Cunningham, C., Porter, A.J.R. (eds) Recombinant Proteins from Plants. Methods in Biotechnology, vol 3. Humana Press. https://doi.org/10.1007/978-1-60327-260-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-260-5_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-390-0

  • Online ISBN: 978-1-60327-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics