Skip to main content

Automated Patch Clamping Using the QPatch

  • Protocol
  • First Online:
High Throughput Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 565))

Abstract

Whole-cell voltage clamp electrophysiology using glass patch pipettes (1) is regarded as the gold standard for measurement of compound activity on ion channels. Despite the high quality of the data generated by this method, in its traditional format, patch clamping has limited use in drug screening due to very low throughput. Over the years, developments in microfabrication have driven the development of planar, multi-aperture technologies that are suitable for parallel, automated patch recording techniques. Here we present detailed methods for two common applications of the planar patch technology using one of the commercially available instruments. The results demonstrate (a) the high quality of whole-cell recordings obtainable from cell lines expressing human Nav1.2 or hERG ion channels, (b) the advantages of the methodology for increasing throughput, and (c) examples of how these assays support ion channel drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  CAS  Google Scholar 

  2. Klemic, K. G., Klemic, J. F., Reed, M. A., and Sigworth, F. J. (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens. Bioelectron. 17, 597–604.

    Article  CAS  Google Scholar 

  3. Dubin, A. E., Nasser, N., Rohrbacher, J., Hermans, A. N., Marrannes, R., Grantham, C., Van, R. K., Cik, M., Chaplan, S. R., Gallacher, D., Xu, J., Guia, A., Byrne, N. G., and Mathes, C. (2005) Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10, 168–181.

    Article  CAS  Google Scholar 

  4. Tao, H., Santa, A. D., Guia, A., Huang, M., Ligutti, J., Walker, G., Sithiphong, K., Chan, F., Guoliang, T., Zozulya, Z., Saya, S., Phimmachack, R., Sie, C., Yuan, J., Wu, L., Xu, J., and Ghetti, A. (2004) Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay. Drug Dev. Technol. 2, 497–506.

    Article  CAS  Google Scholar 

  5. Mathes, C. (2006) QPatch: the past, present and future of automated patch clamp. Expert. Opin. Ther Targets 10, 319–327.

    Article  CAS  Google Scholar 

  6. Schroeder, K., Neagle, B., Trezise, D. J., and Worley, J. (2003) Ionworks HT: a new high-throughput electrophysiology measurement platform. J. Biomol. Screen. 8, 50–64.

    Article  CAS  Google Scholar 

  7. Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307.

    Article  CAS  Google Scholar 

  8. Trudeau, M. C., Warmke, J. W., Ganetzky, B., and Robertson, G. A. (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95.

    Article  CAS  Google Scholar 

  9. Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., Siegl, P. K., Strang, I., Sullivan, A. T., Wallis, R., Camm, A. J., and Hammond, T. G. (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 58, 32–45.

    Article  CAS  Google Scholar 

  10. Guo, L. and Guthrie, H. (2005) Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. J. Pharmacol. Toxicol. Methods. 52, 123–135.

    Google Scholar 

  11. Catterall, W. A. (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 72, S15–S48.

    CAS  Google Scholar 

  12. Whitaker, W. R., Faull, R. L., Waldvogel, H. J., Plumpton, C. J., Emson, P. C., and Clare, J. J. (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res. Mol. Brain Res. 88, 37–53.

    Article  CAS  Google Scholar 

  13. Catterall, W. A. (1999) Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv Neurol. 79, 441–456.

    CAS  Google Scholar 

  14. Clare, J. J., Tate, S. N., Nobbs, M., and Romanos, M. A. (2000) Voltage-gated sodium channels as therapeutic targets. Drug Discov. Today 5, 506–520.

    Article  CAS  Google Scholar 

  15. Bean, B. P., Cohen, C. J., and Tsien, R. W. (1983) Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81, 613–642.

    Article  CAS  Google Scholar 

  16. Kuo, C. C. and Bean, B. P. (1994) Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol. Pharmacol. 46, 716–725.

    CAS  Google Scholar 

  17. Kuo, C. C. and Lu, L. (1997) Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br. J. Pharmacol. 121, 1231–1238.

    Article  CAS  Google Scholar 

  18. Witchel, H. J., Milnes, J. T., Mitcheson, J. S., and Hancox, J. C. (2002) Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. J. Pharmacol. Toxicol. Methods 48, 65–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jones, K.A., Garbati, N., Zhang, H., Large, C.H. (2009). Automated Patch Clamping Using the QPatch. In: Janzen, W., Bernasconi, P. (eds) High Throughput Screening. Methods in Molecular Biology, vol 565. Humana Press. https://doi.org/10.1007/978-1-60327-258-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-258-2_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-257-5

  • Online ISBN: 978-1-60327-258-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics