Skip to main content

Photochemical Enhancement of DNA Delivery by EGF Receptor Targeted Polyplexes

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 434))

Summary

Photochemical internalization (PCI) is a physico-chemical targeting method that enables light directed delivery of nucleic acids into cells. The technology is based on photosensitizers that localize in the membranes of endocytic vesicles. A light activation of the photosensitizers induces photochemical reactions that lead to rupture of the vesicular membranes. This results in the release of endocytosed compounds (e.g., nucleic acids) into the cell cytosol. Physico-chemical and biological targeting techniques can be combined to promote efficient and specific gene delivery to target cells. The present protocol describes PCI of epidermal growth factor receptor (EGFR)-targeted DNA polyplexes. The DNA polyplexes made are small (50-100 nm in diameter), and they contain polyethylenimine (PEI) conjugated with the EGF protein as a cell-binding ligand for EGFR-mediated endocytosis and polyethylene glycol (PEG) for masking the polyplex surface charge. PCI of such targeted PEG-PEI/DNA polyplexes enables high and EGFR-specific gene transfer activity in cells. Although describing in detail PCI of DNA polyplexes, the methodology presented in this protocol is also applicable for PCI of other gene therapy vectors (e.g. viral vectors), peptide nucleic acids (PNA), small interfering RNA (siRNA), and for vectors targeted to alternate cell surface receptors. Generally, PCI can be applied whenever 100% survival of the treated cell population is not required.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig, K., Moan, J., et al. (1999) Photochemical internalization: A novel technology for delivery of macromolecules into cytosol. Cancer Res. 59, 1180–1183.

    CAS  PubMed  Google Scholar 

  2. Dolmans, D. E., Fukumura, D., and Jain, R. K. (2003) Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  3. Prasmickaite, L., HØ, A., and Berg, K. (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. Photochem. Photobiol. 73, 388–395.

    Article  CAS  PubMed  Google Scholar 

  4. Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  5. HØgset, A., Prasmickaite, L., Tjelle, T. E., and Berg, K. (2000) Photochemical transfection: A new technology for light-induced, site-directed gene delivery. Hum. Gene Ther. 11, 869–880.

    Article  PubMed  Google Scholar 

  6. HØgset, A., Engesæter, B. Ø., Prasmickaite, L., Berg, K., Fodstad, Ø., and Mælandsmo, G. M. (2002) Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther. 9, 365–371.

    Article  PubMed  Google Scholar 

  7. Bonsted, A., HØgset, A., Hoover, F., and Berg, K. (2005) Photochemical enhancement of gene delivery to glioblastoma cells is dependent on the vector applied. Anticancer Res. 25, 291–298.

    CAS  PubMed  Google Scholar 

  8. Folini, M., Berg, K., Millo, E., Villa, R., Prasmickaite, L., Daidone, M. G., Benatti. U., and Zaffaroni, N. (2003) Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res. 63, 3490–3494.

    CAS  PubMed  Google Scholar 

  9. Shiraishi, T., and Nielsen, P. E. (2006) Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett. 580, 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  10. Selbo, P. K., Sivam, G., Fodstad, O., Sandvig, K., and Berg, K. (2001) In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. Int. J. Cancer 92, 761–766.

    Article  CAS  PubMed  Google Scholar 

  11. Berg, K., Dietze, A., Kaalhus, O., and HØgset, A. (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin. Cancer Res. 11, 8476–8485.

    Article  CAS  PubMed  Google Scholar 

  12. Nishiyama, N., Iriyama, A., Jang, W. D., Miyata, K., Itaka, K., Inoue, Y., et al. (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 4, 934–941.

    Article  CAS  PubMed  Google Scholar 

  13. Ndoye, A., Dolivet, G., Hogset, A., Leroux, A., Fifre, A., Erbacher, P. et al. (2006) Eradication of p53-Mutated Head and Neck Squamous Cell Carcinoma Xenografts Using Nonviral p53 Gene Therapy and Photochemical Internalization. Mol. Ther. 13, 1156–1162.

    Article  CAS  PubMed  Google Scholar 

  14. Prasmickaite, L., HØ, A., Tjelle, T. E., Olsen, V. M., and Berg, K. (2000) Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). J. Gene Med. 2, 477–488.

    Article  CAS  PubMed  Google Scholar 

  15. Kloeckner, J., Prasmickaite, L., HØ, A., Berg, K., and Wagner, E. (2004) Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J. Drug Target. 12, 205–213.

    Article  CAS  PubMed  Google Scholar 

  16. Ogris, M., Steinlein, P., Kursa, M., Mechtler, K., Kircheis, R., and Wagner, E. (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 5, 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  17. Bonsted, A., Engesæter, B. Ø., HØ, A., Mælandsmo, G. M., Prasmickaite, L., D’Oliveira, C., et al. (2006) Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor. J. Gene Med. 8, 286–297.

    Article  CAS  PubMed  Google Scholar 

  18. Weyergang, A., Selbo, P. K., and Berg, K. (2006) Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF-saporin. J. Control. Release 111, 165–173.

    Article  CAS  PubMed  Google Scholar 

  19. Zou, S. M., Erbacher, P., Remy, J. S., and Behr, J. P. (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2, 128–134.

    Article  CAS  PubMed  Google Scholar 

  20. Brissault, B., Kichler, A., Guis, C., Leborgne, C., Danos, O., and Cheradame, H. (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug. Chem. 14, 581–587.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., and Klibanov, A. M. (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 102, 5679–5684.

    Article  CAS  PubMed  Google Scholar 

  22. Kursa, M., Walker, G. F., Roessler, V., Ogris, M., Roedl, W., Kircheis, R., et al. (2003) Novel Shielded Transferrin-Polyethylene Glycol-Polyethylenimine/DNA Complexes for Systemic Tumor-Targeted Gene Transfer. Bioconjug. Chem. 14, 222–231.

    Article  CAS  PubMed  Google Scholar 

  23. Wolschek, M. F., Thallinger, C., Kursa, M., Rossler, V., Allen, M., Lichtenberger, C., et al. (2002) Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 36, 1106–1114.

    Article  CAS  PubMed  Google Scholar 

  24. Plank, C., Zatloukal, K., Cotton, M., Mechtler, K., and Wagner, E. (1992) Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug. Chem. 3, 533–539.

    Article  CAS  PubMed  Google Scholar 

  25. Prasmickaite, L., HØgset, A., Selbo, P. K., Engesæter, B. Ø., Hellum, M., and Berg, K. (2002) Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. British J. Cancer 86, 652–657.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media

About this protocol

Cite this protocol

Bonsted, A., Wagner, E., Prasmickaite, L., HØgset, A., Berg, K. (2008). Photochemical Enhancement of DNA Delivery by EGF Receptor Targeted Polyplexes. In: Le Doux, J.M. (eds) Gene Therapy Protocols. Methods in Molecular Biology™, vol 434. Humana Press. https://doi.org/10.1007/978-1-60327-248-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-248-3_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-247-6

  • Online ISBN: 978-1-60327-248-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics