Distance Measurements by Continuous Wave EPR Spectroscopy to Monitor Protein Folding

  • James A. Cooke
  • Louise J. BrownEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 752)


Site-Directed Spin Labeling Electron Paramagnetic Resonance (SDSL-EPR) offers a powerful method for the structural analysis of protein folds. This method can be used to test and build secondary, tertiary, and quaternary structural models as well as measure protein conformational changes in solution. Insertion of two cysteine residues into the protein backbone using molecular biology methods and the subsequent labeling of the cysteine residues with a paramagnetic spin label enables the technique of EPR to be used as a molecular spectroscopic ruler. EPR measures the dipolar interaction between pairs of paramagnetic spin labels to yield internitroxide distances from which quantitative structural information on a protein fold can then be obtained. Interspin dipolar interaction between two spin labels at less than 25  Å are measured using continuous wave (CW) EPR methods. As for any low-resolution distance methods, the positioning of the spin labels and the number of distance constraints to be measured are dependent on the structural question being asked, thus a pattern approach for using distance sets to decipher structure mapping, including protein folds and conformational changes associated with biological activity, is essential. Practical guidelines and hints for the technique of SDSL-EPR are described in this chapter, including methods for spin labeling the protein backbone, CW-EPR data collection at physiological temperatures and two semiquantitative analysis methods to extract interspin distance information from the CW-EPR spectra.

Key words

Site-directed spin labeling Electron paramagnetic resonance Protein folding Continu­ous wave EPR spectroscopy Site-directed mutagenesis Interspin distances Dipolar interaction 



This work was supported by the Australian Research Council (ARC). LB is a recipient of an ARC APD fellowship and JC is a recipient of a Macquarie University Research Areas and Centres of Excellence Award (RAACE). The authors thank Mr Michael Howell for his editorial assistance.


  1. 1.
    Hubbell, W. L., and Altenbach, C. (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol. 4, 566–573.CrossRefGoogle Scholar
  2. 2.
    Hubbell, W. L., Gross, A., Langen, R., and Lietzow, M. A. (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 8, 649–656.PubMedCrossRefGoogle Scholar
  3. 3.
    Hubbell, W. L., McHaourab, H. S., Altenbach, C., and Lietzow, M. A. (1996) Watching proteins move using site-directed spin labeling. Structure. 4, 779–783.PubMedCrossRefGoogle Scholar
  4. 4.
    Klug, C. S., Su, W., and Feix, J. B. (1997) Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling. Biochemistry. 36, 13027–13033.PubMedCrossRefGoogle Scholar
  5. 5.
    Columbus, L., and Hubbell, W. L. (2002) A new spin on protein dynamics. Trends Biochem Sci. 27, 288–295.PubMedCrossRefGoogle Scholar
  6. 6.
    Fajer, P., Brown, L., and Song, L. (2007) Practical Pulsed Dipolar ESR (DEER), in Biological Magnetic Resonance (Hemminga, M., and Berliner, L., Eds.), Vol. 27, Springer, New York, pp. 95–128.Google Scholar
  7. 7.
    Czogalla, A., Pieciul, A., Jezierski, A., and Sikorski, A. F. (2007) Attaching a spin to a protein - site-directed spin labeling in structural biology. Acta Biochim Pol. 54, 235–244.PubMedGoogle Scholar
  8. 8.
    Schiemann, O., and Prisner, T. F. (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys. 40, 1–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Fanucci, G. E., and Cafiso, D. S. (2006) Recent advances and applications of ­site-directed spin labeling. Curr Opin Struct Biol. 16, 644–653.PubMedCrossRefGoogle Scholar
  10. 10.
    Steinhoff, H. J. (2004) Inter- and intra-­molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction. Biol Chem. 385, 913–920.PubMedCrossRefGoogle Scholar
  11. 11.
    Borbat, P. P., Costa-Filho, A. J., Earle, K. A., Moscicki, J. K., and Freed, J. H. (2001) Electron spin resonance in studies of membranes and proteins. Science. 291, 266–269.PubMedCrossRefGoogle Scholar
  12. 12.
    Hubbell, W. L., Cafiso, D. S., and Altenbach, C. (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol. 7, 735–739.PubMedCrossRefGoogle Scholar
  13. 13.
    Hustedt, E. J., and Beth, A. H. (1999) Nitroxide spin–spin interactions: applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct. 28, 129–153.PubMedCrossRefGoogle Scholar
  14. 14.
    Perozo, E., Cortes, D. M., and Cuello, L. G. (1999) Structural rearrangements underlying K+−channel activation gating. Science. 285, 73–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Cai, Q., Kusnetzow, A. K., Hideg, K., Price, E. A., Haworth, I. S., and Qin, P. Z. (2007) Nanometer distance measurements in RNA using site-directed spin labeling. Biophys J. 93, 2110–2117.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown, L. J., Sale, K. L., Hills, R., Rouviere, C., Song, L., Zhang, X., and Fajer, P. G. (2002) Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance. Proc Natl Acad Sci U S A. 99, 12765–12770.PubMedCrossRefGoogle Scholar
  17. 17.
    Xiao, W., Poirier, M. A., Bennett, M. K., and Shin, Y. K. (2001) The neuronal t-SNARE complex is a parallel four-helix bundle. Nat Struct Biol. 8, 308–311.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, M., Margittai, M., Chen, J., and Langen, R. (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem. 282, 24970–24979.PubMedCrossRefGoogle Scholar
  19. 19.
    Hanson, S. M., Francis, D. J., Vishnivetskiy, S. A., Klug, C. S., and Gurevich, V. V. (2006) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem. 281, 9765–9772.PubMedCrossRefGoogle Scholar
  20. 20.
    Radzwill, N., Gerwert, K., and Steinhoff, H. J. (2001) Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys J. 80, 2856–2866.PubMedCrossRefGoogle Scholar
  21. 21.
    Xiao, W., Brown, L. S., Needleman, R., Lanyi, J. K., and Shin, Y. K. (2000) Light-induced rotation of a transmembrane alpha-helix in bacteriorhodopsin. J Mol Biol. 304, 715–721.PubMedCrossRefGoogle Scholar
  22. 22.
    Hustedt, E. J., Stein, R. A., Sethaphong, L., Brandon, S., Zhou, Z., and Desensi, S. C. (2006) Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model. Biophys J. 90, 340–356.PubMedCrossRefGoogle Scholar
  23. 23.
    Sale, K., Song, L., Liu, Y. S., Perozo, E., and Fajer, P. (2005) Explicit Treatment of Spin Labels in Modeling of Distance Constraints from Dipolar EPR and DEER. J Am Chem Soc. 127, 9334–9335.PubMedCrossRefGoogle Scholar
  24. 24.
    Walker, J. M. (2002) SDS Polyacrylamide Gel Electrophoresis of Proteins, in The Protein Protocols Handbook (Walker, J. M., Ed.), Humana, Totowa, NJ, pp. 61–67.CrossRefGoogle Scholar
  25. 25.
    Altenbach, C., Cai, K., Klein-Seetharaman, J., Khorana, H. G., and Hubbell, W. L. (2001) Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306–319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry. 40, 15483–15492.PubMedCrossRefGoogle Scholar
  26. 26.
    Langen, R., Isas, J. M., Luecke, H., Haigler, H. T., and Hubbell, W. L. (1998) Membrane-mediated assembly of annexins studied by site-directed spin labeling. J Biol Chem. 273, 22453–22457.PubMedCrossRefGoogle Scholar
  27. 27.
    Langen, R., Oh, K. J., Cascio, D., and Hubbell, W. L. (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry. 39, 8396–8405.PubMedCrossRefGoogle Scholar
  28. 28.
    McHaourab, H. S., Lietzow, M. A., Hideg, K., and Hubbell, W. L. (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry. 35, 7692–7704.Google Scholar
  29. 29.
    Perozo, E., Cortes, D. M., and Cuello, L. G. (1998) Three-dimensional architecture and ­gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 5, 459–469.PubMedCrossRefGoogle Scholar
  30. 30.
    Aitken, A., and Learmonth, M. P. (2002) Protein Determination by UV Absorption, in The Protein Protocols Handbook (Walker, J. M., Ed.), Humana, Totowa, NJ, pp. 3–6.CrossRefGoogle Scholar
  31. 31.
    Waterborg, J. H. (2002) The Lowry Method for Protein Quantitation, in The Protein Protocols Handbook (Walker, J. M., Ed.), Humana, Totowa, NJ, pp. 7–9.CrossRefGoogle Scholar
  32. 32.
    Walker, J. M. (2002) The Bicinchoninic Acid (BCA) Assay for Protein Quantitation, in The Protein Protocols Handbook (Walker, J. M., Ed.), Humana, Totowa, NJ, pp. 11–14.CrossRefGoogle Scholar
  33. 33.
    Kruger, N. J. (2002) The Bradford Method for Protein Quantitation, in The Protein Protocols Handbook (Walker, J. M., Ed.), Humana, Totowa, NJ, pp. 15–21.CrossRefGoogle Scholar
  34. 34.
    Hustedt, E. J., Smirnov, A. I., Laub, C. F., Cobb, C. E., and Beth, A. H. (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J. 72, 1861–1877.PubMedCrossRefGoogle Scholar
  35. 35.
    Steinhoff, H. J., Radzwill, N., Thevis, W., Lenz, V., Brandenburg, D., Antson, A., Dodson, G., and Wollmer, A. (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J. 73, 3287–3298.PubMedCrossRefGoogle Scholar
  36. 36.
    Rabenstein, M. D., and Shin, Y. K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci U S A. 92, 8239–8243.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang, F., Chen, Y., Kweon, D. H., Kim, C. S., and Shin, Y. K. (2002) The four-helix bundle of the neuronal target membrane SNARE complex is neither disordered in the middle nor uncoiled at the C-terminal region. J Biol Chem. 277, 24294–24298.PubMedCrossRefGoogle Scholar
  38. 38.
    Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K., and Hubbell, W. L. (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry. 40, 15471–15482.PubMedCrossRefGoogle Scholar
  39. 39.
    McHaourab, H. S., Oh, K. J., Fang, C. J., and Hubbell, W. L. (1997) Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry. 36, 307–316.Google Scholar
  40. 40.
    Xiao, W., and Shin, Y.-K. (2000) EPR Spectroscopic Ruler: The Deconvolution Method and its Applications, in Biological Magnetic Resonance: Distance Measurements in Biological Systems by EPR (Berliner, L. J., Eaton, S. S., and Eaton, G. R., Eds.), Vol. 19, Kluwer Academic/Plenum Publishers, New York, pp. 249–276.Google Scholar
  41. 41.
    Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., and Martinac, B. (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature. 418, 942–948.PubMedCrossRefGoogle Scholar
  42. 42.
    Persson, M., Harbridge, J. R., Hammarstrom, P., Mitri, R., Martensson, L. G., Carlsson, U., Eaton, G. R., and Eaton, S. S. (2001) Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophys J. 80, 2886–2897.PubMedCrossRefGoogle Scholar
  43. 43.
    Riddles, P. W., Blakeley, R. L., and Zerner, B. (1983) Reassessment of Ellman’s reagent. Methods Enzymol. 91, 49–60.CrossRefGoogle Scholar
  44. 44.
    McHaourab, H. S., Berengian, A. R., and Koteiche, H. A. (1997) Site-directed spin-labeling study of the structure and subunit interactions along a conserved sequence in the alpha-crystallin domain of heat-shock protein 27. Evidence of a conserved subunit interface. Biochemistry. 36, 14627–14634.Google Scholar
  45. 45.
    Fajer, P. G. (2005) Site directed spin labelling and pulsed dipolar electron paramagnetic resonance (double electron-electron resonance) of force activation in muscle. J Phys Condens Matter. 17, S1459–S1469.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Biomolecular SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations