Skip to main content

Synthesis of Peptide Sequences Derived from Fibril-Forming Proteins

  • Protocol
  • First Online:
Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

  • 2407 Accesses

Abstract

The pathogenesis of a large number of diseases, including Alzheimer’s Disease, Parkinson’s Disease, and Creutzfeldt–Jakob Disease (CJD), is associated with protein aggregation and the formation of amyloid, fibrillar deposits. Peptide fragments of amyloid-forming proteins have been found to form fibrils in their own right and have become important tools for unlocking the mechanism of amyloid fibril formation and the pathogenesis of amyloid diseases. The synthesis and purification of peptide sequences derived from amyloid fibril-forming proteins can be extremely challenging. The synthesis may not proceed well, generating a very low quality crude product which can be difficult to purify. Even clean crude peptides can be difficult to purify, as they are often insoluble or form fibrils rapidly in solution. This chapter presents methods to recognise and to overcome the difficulties associated with the synthesis, and purification of fibril-forming peptides, illustrating the points with three synthetic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield, R. B. (1963) Solid Phase Synthesis I. The Synthesis of a Tetrapeptide. J. Amer. Chem. Soc. 85, 2149–2154.

    Article  CAS  Google Scholar 

  2. Kent, S. B., Mitchell, A. R., Engelhard, M. and Merrifield, R. B.(1979) Mechanisms and prevention of trifluoroacetylation in solid-phase peptide synthesis. Proc. Natl. Acad. Sci. U S A. 76(5), 21802184.

    Article  PubMed  CAS  Google Scholar 

  3. Sarin, V. K., Kent, S. B., Tam, J. P. and Merrifield, R. B. (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction Anal. Biochem. 117(1), 147157.

    CAS  Google Scholar 

  4. Brown, E., Sheppard, R. C. and Williams, B. J. (1983) Peptide Synthesis. Part 5. Solid-phase Synthesis of [15-Leucine] Little Gastrin. J. Chem. Soc. Perkin Trans. I, 1161–1167.

    Google Scholar 

  5. Sheppard, R. C. (1986) Modern methods of solid-phase peptide synthesis. Science Tools 33, 9–16.

    Google Scholar 

  6. Schnolzer, M., Alewood, P., Jones, A., Alewood, D. and Kent, S. B. H. (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int. J. Peptide Protein Res. 40, 180–193.

    Article  CAS  Google Scholar 

  7. Alberico, F. and Carpino, L. A. (1997) Coupling reagents and activation Methods Enzymol. 289, 104–126.

    Google Scholar 

  8. Clark-Lewis, I., Aebersold, R., Ziltener, H., Schrader, J. W., Hood, L. E. and Kent, S. B. H. (1986) Automated Chemical Synthesis of a Protein Growth Factor for Hemopoietic Cells, Interleukin-3. Science 231, 134–139.

    Article  PubMed  CAS  Google Scholar 

  9. Scanlon, D. B., Eefting, M. A., Lloyd, C. J., Burgess, A. W. and Simpson, R. J. (1987) Synthesis of Biologically Active Transforming Growth Factor-alpha by Fluorenyl­methoxy­carbonyl Solid Phase Peptide Chemistry. J. Chem. Soc. Chem. Commun. 516–518.

    Google Scholar 

  10. Dawson, P. E., Muir, T. W., Clark-Lewis, I. and Kent, S. B. (1994) Synthesis of proteins by native chemical ligation. Science 266, 776779.

    Article  PubMed  CAS  Google Scholar 

  11. Yamamoto, N., Tanabe, Y., Okamoto, R., Dawson, P.E. and Kajihara, Y. (2008) Chemical Synthesis of a Glycoprotein Having an Intact Human Complex-Type Sialyloligosaccharide under the Boc and Fmoc Synthetic Strategies J. Am. Chem. Soc. 130(2), 501–510.

    Article  CAS  Google Scholar 

  12. Macmillan, D. (2006) Protein Synthesis: Evolving Strategies for Protein Synthesis Converge on Native Chemical Ligation Angew. Chem. Int. Ed. 45, 7668–7672.

    Article  CAS  Google Scholar 

  13. Tickler, A. K.,. Clippingdale, A. B. and Wade, J. D. (2004) Amyloid-β as a “Difficult Sequence” in Solid Phase Peptide Synthesis. Protein & Peptide Letters 11(4), 377–384.

    Article  CAS  Google Scholar 

  14. Mutter, M., Nefzi, A., Sato, T., Sun, X., Wahl, F., and Wohr, T. (1995) Pseudo-prolines for accessing “inaccessible” peptides Peptide Research 8(3), 145–153.

    PubMed  CAS  Google Scholar 

  15. Simmonds, R. G. (1996) Use of the Hmb backbone-protecting group in the synthesis of difficult sequences. Int. J. Pept. Protein Res. 47(1–2), 36–41.

    PubMed  CAS  Google Scholar 

  16. Tickler, A. K., Barrow, C. J. and Wade, J. D. (2001) Improved Preparation of Amyloid-Peptides Using DBU as N-Fmoc Deprotection Reagent J. Peptide Sci. 7, 488–494.

    Article  CAS  Google Scholar 

  17. Sohma, Y. and Kiso, Y. (2006) “Click peptides”-chemical biology-oriented synthesis of Alzheimer’s disease-related amyloid beta peptide (abeta) analogues based on the “O-acyl isopeptide method”. Chembiochem. 7(10), 15491557.

    Article  PubMed  CAS  Google Scholar 

  18. Taniguchi, A., Sohma, Y., Hirayama, Y., Mukai, H., Kimura, T., Hayashi, Y., Matsuzaki, K., Kiso, Y. (2009) “Click peptide”: pH-triggered in situ production and aggregation of monomer Abeta1-42. Chembiochem. 10(4), 710715.

    Article  PubMed  CAS  Google Scholar 

  19. Howlett, G. J., and Moore, K. J. (2006) Untangling the role of amyloid in atherosclerosis Current Opinion in Lipidology 17, 541–547.

    Article  CAS  Google Scholar 

  20. Wilson, L. M., Mok, Y. F., Binger, K. J., Griffin, M. D., Mertens, H. D., Lin, F., Wade, J. D., Gooley, P. R. and Howlett, G. J. (2007) A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. J. Mol. Biol. 366(5), 16391651.

    Article  PubMed  CAS  Google Scholar 

  21. Van Nostrand, W.E., Davis-Salinas, J. and Saporito-Irwin, S. M. (1996) Amyloid beta-protein induces the cerebrovascular cellular pathology of Alzheimer’s disease and related disorders Ann. N Y. Acad. Sci. 777, 297–302.

    Google Scholar 

  22. Ball, H. L. and Mascagni, P. (1996) Chemical protein synthesis and purification: a methodology. Int. J. Peptide Protein Res. 48,31–47.

    Article  CAS  Google Scholar 

  23. Bonetto, V., Massignan, T., Chiesa, R., Morbin, M., Mazzoleni, G., Diomede, L., Angeretti, N., Colombo, L., Forloni, G., Tagliavini, F., and Salmona, M. (2002) Synthetic miniprion PrP106 J. Biol. Chem. 277, 31327–31334.

    Article  CAS  Google Scholar 

  24. Bahadi, R., Farrelly, P. V., Kenna, B. L., Kourie, J. I., Tagliavini, F., Forloni, G. and Salmona, M. (2003) PrP(82–146) homologous to a 7-kDa fragment in Channels formed with a mutant prion protein diseased brain of GSS patients Am. J. Physiol. Cell. Physiol. 285, 862872.

    Google Scholar 

Download references

Acknowledgements

We thank Ms Keyla Perez for her advice with the Vydac C4 preparative column technology and peptide purifications performed at 60°C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis B. Scanlon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scanlon, D.B., Karas, J.A. (2011). Synthesis of Peptide Sequences Derived from Fibril-Forming Proteins. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics