Surface Plasmon Resonance Spectroscopy: A New Lead in Studying the Membrane Binding of Amyloidogenic Transthyretin

  • Xu Hou
  • David H. Small
  • Marie-Isabel AguilarEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 752)


Surface plasmon resonance (SPR) employs the optical principle of SPR to measure changes in mass on a sensor chip surface in real time. Surface chemistry has been developed which enables the immoblization of lipid bilayers and determination of protein–membrane interactions in real time. In the last decade, the plasma membrane has been demonstrated to play an important role in amyloidogenesis and cytotoxicity induced by amyloidogenic proteins. SPR provides an ideal way to study the membrane binding of amyloidogenic proteins. In this chapter, we describe the application of SPR to the study of amyloidogenic transthyretin binding to the plasma membrane and artificial lipid bilayers.

Key words

Amyloid Transthyretin Surface plasmon resonance BIACORE biosensor Plasma membrane Lipid vesicle Binding Aqueous two-phase partition system 


  1. 1.
    Markey, F. (2000) Principles of surface plasmon resonance, in Real-time analysis of biomolecular interactions: applications of BIACORE, Ed. (K. Nagata and H. Handa, ed.) Springer-Verlag, Tokyo, pp. 13–22.Google Scholar
  2. 2.
    Kretschmann, E. (1971) Die Bestimmung optischer Konstanten von metallen durch Anregung von Oberflachenplas­masch­win­gungen. Z Phys. 241, 313–324.CrossRefGoogle Scholar
  3. 3.
    Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I. and et al. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 11, 620–627.PubMedGoogle Scholar
  4. 4.
    Hashimoto, S. (2000) Principles of BIACORE, in Real-time analysis of biomolecular inter­actions: applications of BIACORE, Ed. (K. Nagata and H. Handa, ed.) Springer-Verlag, Tokyo, pp. 23–32.Google Scholar
  5. 5.
    Stenberg, E., Persson, B., Roos, H. and Urbaniczky, C. (1990) Quantitative ­determination of surface concentration of protein with surface plasmon resonance by using radiolabeled proteins. J Colloid Interface Sci. 143, 513–526.CrossRefGoogle Scholar
  6. 6.
    Fagerstam, L. G., Frostell, A., Karlsson, R., Kullman, M., Larsson, A., Malmqvist, M. and Butt, H. (1990) Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J Mol Recognit. 3, 208–214.PubMedCrossRefGoogle Scholar
  7. 7.
    Rich, R. L. and Myszka, D. G. (2000) Survey of the 1999 surface plasmon resonance biosensor literature. J Mol Recognit. 13, 388–407.PubMedCrossRefGoogle Scholar
  8. 8.
    Rich, R. L. and Myszka, D. G. (2001) Survey of the year 2000 commercial optical biosensor literature. J Mol Recognit. 14, 273–294.PubMedCrossRefGoogle Scholar
  9. 9.
    Rich, R. L. and Myszka, D. G. (2002) Survey of the year 2001 commercial optical biosensor literature. J Mol Recognit. 15, 352–376.PubMedCrossRefGoogle Scholar
  10. 10.
    Rich, R. L. and Myszka, D. G. (2003) Survey of the year 2002 commercial optical biosensor literature. J Mol Recognit. 16, 351–382.PubMedCrossRefGoogle Scholar
  11. 11.
    Rich, R. L. and Myszka, D. G. (2005) Survey of the year 2003 commercial optical biosensor literature. J Mol Recognit. 18, 1–39.PubMedCrossRefGoogle Scholar
  12. 12.
    Myszka, D. G. (1999) Survey of the 1998 optical biosensor literature. J Mol Recognit. 12, 390–408.PubMedCrossRefGoogle Scholar
  13. 13.
    Aguilar, M. I. and Small, D. H. (2005) Surface plasmon resonance for the analysis of beta-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotox Res. 7, 17–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper, M. A., Hansson, A., Lofas, S. and Williams, D. H. (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem. 277, 196–205.PubMedCrossRefGoogle Scholar
  15. 15.
    Plant, A. L., Brigham-Burke, M., Petrella, E. C. and O’Shannessy, D. J. (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal Biochem. 226, 342–348.PubMedCrossRefGoogle Scholar
  16. 16.
    Besenicar, M., Macek, P., Lakey, J. H. and Anderluh, G. (2006) Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipids. 141, 169–178.PubMedCrossRefGoogle Scholar
  17. 17.
    McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol. 5, 572–577.PubMedCrossRefGoogle Scholar
  18. 18.
    Mozsolits, H. and Aguilar, M. I. (2002) Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers. 66, 3–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper, M. A. (2004) Advances in membrane receptor screening and analysis. J Mol Recognit. 17, 286–315.PubMedCrossRefGoogle Scholar
  20. 20.
    Mozsolits, H., Thomas, W. G. and Aguilar, M. I. (2003) Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J Pept Sci. 9, 77–89.PubMedCrossRefGoogle Scholar
  21. 21.
    Ariga, T., Kobayashi, K., Hasegawa, A., Kiso, M., Ishida, H. and Miyatake, T. (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch Biochem Biophys. 388, 225–230.PubMedCrossRefGoogle Scholar
  22. 22.
    Inaba, S., Okada, T., Konakahara, T. and Kodaka, M. (2005) Specific binding of amyloid-β-protein to IMR-32 neuroblastoma cell. J Pept Res. 65, 485–490.PubMedCrossRefGoogle Scholar
  23. 23.
    Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I. and Small, D. H. (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem. 84, 471–479.PubMedCrossRefGoogle Scholar
  24. 24.
    Kremer, J. J. and Murphy, R. M. (2003) Kinetics of adsorption of beta-amyloid peptide Abeta(1–40) to lipid bilayers. J Biochem Biophys Methods. 57, 159–169.PubMedCrossRefGoogle Scholar
  25. 25.
    Critchley, P., Kazlauskaite, J., Eason, R. and Pinheiro, T. J. (2004) Binding of prion proteins to lipid membranes. Biochem Biophys Res Commun. 313, 559–567.PubMedCrossRefGoogle Scholar
  26. 26.
    Hou, X., Richardson, S. J., Aguilar, M. I. and Small, D. H. (2005) Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 44, 11618–11627.PubMedCrossRefGoogle Scholar
  27. 27.
    Hou, X., Mechler, A., Martin, L. L., Aguilar, M. I. and Small, D. H. (2008) Cholesterol and anionic phospholipids increase the binding of amyloidogenic transthyretin to lipid membranes. Biochim Biophys Acta. 1778, 198–205.PubMedCrossRefGoogle Scholar
  28. 28.
    Hou, X., Aguilar, M. I. and Small, D. H. (2007) Transthyretin and familial amyloidotic polyneuropathy: clues to the molecular mechanism of neurodegeneration in amyloidosis. FEBS J. 274, 1637–1650.PubMedCrossRefGoogle Scholar
  29. 29.
    Morre, D. J. and Morre, D. M. (1989) Preparation of mammalian plasma membranes by aqueous two-phase partition. Biotechniques. 7, 946–948, 950–944, 956–948.Google Scholar
  30. 30.
    Henn, F. A., Hansson, H.-A. and Hamberger, A. (1972) Preparation of plasma membrane from isolated neurons. J Cell Biol. 53, 654–661.PubMedCrossRefGoogle Scholar
  31. 31.
    Mersel, M., Lelong, I., Hindelang, C., Sarlieve, L. L. and Vincendon, G. (1987) Isolation of plasma membranes from neurons grown in primary culture. Anal Biochem. 166, 246–252.PubMedCrossRefGoogle Scholar
  32. 32.
    Fujiki, Y., Hunnard, A. L., Fowler, S. and Lazarow, P. B. (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 93, 97–102.PubMedCrossRefGoogle Scholar
  33. 33.
    Folch, J., Lees, M. and Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226, 497–509.PubMedGoogle Scholar
  34. 34.
    Suzuki, K. (1976) Chemistry and metabolism of brain lipids, in Basic neurochemistry, 2nd Ed. (G. J. Siegel, R. W. Albers, R. Katzman and B. W. Agranoff, ed.) Little, Brown and Company, Boston, pp. 308–328.Google Scholar
  35. 35.
    Erb, E. M., Chen, X., Allen, S., Roberts, C. J., Tendler, S. J., Davies, M. C. and Forsen, S. (2000) Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal Biochem. 280, 29–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Anderluh, G., Besenicar, M., Kladnik, A., Lakey, J. H. and Macek, P. (2005) Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Anal Biochem. 344, 43–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Henriques, S. T., Pattenden, L. K., Aguilar, M. I. and Castanho, M. A. (2008) PrP(106–126) does not interact with membranes under physiological conditions. Biophys J. Epub, doi: 10.1529/biophysj.1108.131458.Google Scholar
  38. 38.
    Mozsolits, H., Wirth, H. J., Werkmeister, J. and Aguilar, M. I. (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta. 1512, 64–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y. and Matsuzaki, K. (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry. 41, 7385–7390.PubMedCrossRefGoogle Scholar
  40. 40.
    Matsuzaki, K. and Horikiri, C. (1999) Interactions of amyloid beta-peptide (1–40) with ganglioside-containing membranes. Biochemistry. 38, 4137–4142.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia

Personalised recommendations