Skip to main content

Surface Plasmon Resonance Spectroscopy: A New Lead in Studying the Membrane Binding of Amyloidogenic Transthyretin

  • Protocol
  • First Online:
Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

Abstract

Surface plasmon resonance (SPR) employs the optical principle of SPR to measure changes in mass on a sensor chip surface in real time. Surface chemistry has been developed which enables the immoblization of lipid bilayers and determination of protein–membrane interactions in real time. In the last decade, the plasma membrane has been demonstrated to play an important role in amyloidogenesis and cytotoxicity induced by amyloidogenic proteins. SPR provides an ideal way to study the membrane binding of amyloidogenic proteins. In this chapter, we describe the application of SPR to the study of amyloidogenic transthyretin binding to the plasma membrane and artificial lipid bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markey, F. (2000) Principles of surface plasmon resonance, in Real-time analysis of biomolecular interactions: applications of BIACORE, Ed. (K. Nagata and H. Handa, ed.) Springer-Verlag, Tokyo, pp. 13–22.

    Google Scholar 

  2. Kretschmann, E. (1971) Die Bestimmung optischer Konstanten von metallen durch Anregung von Oberflachenplas­masch­win­gungen. Z Phys. 241, 313–324.

    Article  CAS  Google Scholar 

  3. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I. and et al. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 11, 620–627.

    PubMed  CAS  Google Scholar 

  4. Hashimoto, S. (2000) Principles of BIACORE, in Real-time analysis of biomolecular inter­actions: applications of BIACORE, Ed. (K. Nagata and H. Handa, ed.) Springer-Verlag, Tokyo, pp. 23–32.

    Google Scholar 

  5. Stenberg, E., Persson, B., Roos, H. and Urbaniczky, C. (1990) Quantitative ­determination of surface concentration of protein with surface plasmon resonance by using radiolabeled proteins. J Colloid Interface Sci. 143, 513–526.

    Article  Google Scholar 

  6. Fagerstam, L. G., Frostell, A., Karlsson, R., Kullman, M., Larsson, A., Malmqvist, M. and Butt, H. (1990) Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J Mol Recognit. 3, 208–214.

    Article  PubMed  CAS  Google Scholar 

  7. Rich, R. L. and Myszka, D. G. (2000) Survey of the 1999 surface plasmon resonance biosensor literature. J Mol Recognit. 13, 388–407.

    Article  PubMed  CAS  Google Scholar 

  8. Rich, R. L. and Myszka, D. G. (2001) Survey of the year 2000 commercial optical biosensor literature. J Mol Recognit. 14, 273–294.

    Article  PubMed  CAS  Google Scholar 

  9. Rich, R. L. and Myszka, D. G. (2002) Survey of the year 2001 commercial optical biosensor literature. J Mol Recognit. 15, 352–376.

    Article  PubMed  CAS  Google Scholar 

  10. Rich, R. L. and Myszka, D. G. (2003) Survey of the year 2002 commercial optical biosensor literature. J Mol Recognit. 16, 351–382.

    Article  PubMed  CAS  Google Scholar 

  11. Rich, R. L. and Myszka, D. G. (2005) Survey of the year 2003 commercial optical biosensor literature. J Mol Recognit. 18, 1–39.

    Article  PubMed  CAS  Google Scholar 

  12. Myszka, D. G. (1999) Survey of the 1998 optical biosensor literature. J Mol Recognit. 12, 390–408.

    Article  PubMed  CAS  Google Scholar 

  13. Aguilar, M. I. and Small, D. H. (2005) Surface plasmon resonance for the analysis of beta-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotox Res. 7, 17–27.

    Article  PubMed  CAS  Google Scholar 

  14. Cooper, M. A., Hansson, A., Lofas, S. and Williams, D. H. (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem. 277, 196–205.

    Article  PubMed  CAS  Google Scholar 

  15. Plant, A. L., Brigham-Burke, M., Petrella, E. C. and O’Shannessy, D. J. (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal Biochem. 226, 342–348.

    Article  PubMed  CAS  Google Scholar 

  16. Besenicar, M., Macek, P., Lakey, J. H. and Anderluh, G. (2006) Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipids. 141, 169–178.

    Article  PubMed  CAS  Google Scholar 

  17. McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol. 5, 572–577.

    Article  PubMed  CAS  Google Scholar 

  18. Mozsolits, H. and Aguilar, M. I. (2002) Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers. 66, 3–18.

    Article  PubMed  CAS  Google Scholar 

  19. Cooper, M. A. (2004) Advances in membrane receptor screening and analysis. J Mol Recognit. 17, 286–315.

    Article  PubMed  CAS  Google Scholar 

  20. Mozsolits, H., Thomas, W. G. and Aguilar, M. I. (2003) Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J Pept Sci. 9, 77–89.

    Article  PubMed  CAS  Google Scholar 

  21. Ariga, T., Kobayashi, K., Hasegawa, A., Kiso, M., Ishida, H. and Miyatake, T. (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch Biochem Biophys. 388, 225–230.

    Article  PubMed  CAS  Google Scholar 

  22. Inaba, S., Okada, T., Konakahara, T. and Kodaka, M. (2005) Specific binding of amyloid-β-protein to IMR-32 neuroblastoma cell. J Pept Res. 65, 485–490.

    Article  PubMed  CAS  Google Scholar 

  23. Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I. and Small, D. H. (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem. 84, 471–479.

    Article  PubMed  CAS  Google Scholar 

  24. Kremer, J. J. and Murphy, R. M. (2003) Kinetics of adsorption of beta-amyloid peptide Abeta(1–40) to lipid bilayers. J Biochem Biophys Methods. 57, 159–169.

    Article  PubMed  CAS  Google Scholar 

  25. Critchley, P., Kazlauskaite, J., Eason, R. and Pinheiro, T. J. (2004) Binding of prion proteins to lipid membranes. Biochem Biophys Res Commun. 313, 559–567.

    Article  PubMed  CAS  Google Scholar 

  26. Hou, X., Richardson, S. J., Aguilar, M. I. and Small, D. H. (2005) Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 44, 11618–11627.

    Article  PubMed  CAS  Google Scholar 

  27. Hou, X., Mechler, A., Martin, L. L., Aguilar, M. I. and Small, D. H. (2008) Cholesterol and anionic phospholipids increase the binding of amyloidogenic transthyretin to lipid membranes. Biochim Biophys Acta. 1778, 198–205.

    Article  PubMed  CAS  Google Scholar 

  28. Hou, X., Aguilar, M. I. and Small, D. H. (2007) Transthyretin and familial amyloidotic polyneuropathy: clues to the molecular mechanism of neurodegeneration in amyloidosis. FEBS J. 274, 1637–1650.

    Article  PubMed  CAS  Google Scholar 

  29. Morre, D. J. and Morre, D. M. (1989) Preparation of mammalian plasma membranes by aqueous two-phase partition. Biotechniques. 7, 946–948, 950–944, 956–948.

    Google Scholar 

  30. Henn, F. A., Hansson, H.-A. and Hamberger, A. (1972) Preparation of plasma membrane from isolated neurons. J Cell Biol. 53, 654–661.

    Article  PubMed  CAS  Google Scholar 

  31. Mersel, M., Lelong, I., Hindelang, C., Sarlieve, L. L. and Vincendon, G. (1987) Isolation of plasma membranes from neurons grown in primary culture. Anal Biochem. 166, 246–252.

    Article  PubMed  CAS  Google Scholar 

  32. Fujiki, Y., Hunnard, A. L., Fowler, S. and Lazarow, P. B. (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 93, 97–102.

    Article  PubMed  CAS  Google Scholar 

  33. Folch, J., Lees, M. and Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  34. Suzuki, K. (1976) Chemistry and metabolism of brain lipids, in Basic neurochemistry, 2nd Ed. (G. J. Siegel, R. W. Albers, R. Katzman and B. W. Agranoff, ed.) Little, Brown and Company, Boston, pp. 308–328.

    Google Scholar 

  35. Erb, E. M., Chen, X., Allen, S., Roberts, C. J., Tendler, S. J., Davies, M. C. and Forsen, S. (2000) Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal Biochem. 280, 29–35.

    Article  PubMed  CAS  Google Scholar 

  36. Anderluh, G., Besenicar, M., Kladnik, A., Lakey, J. H. and Macek, P. (2005) Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Anal Biochem. 344, 43–52.

    Article  PubMed  CAS  Google Scholar 

  37. Henriques, S. T., Pattenden, L. K., Aguilar, M. I. and Castanho, M. A. (2008) PrP(106–126) does not interact with membranes under physiological conditions. Biophys J. Epub, doi:10.1529/biophysj.1108.131458.

    Google Scholar 

  38. Mozsolits, H., Wirth, H. J., Werkmeister, J. and Aguilar, M. I. (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta. 1512, 64–76.

    Article  PubMed  CAS  Google Scholar 

  39. Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y. and Matsuzaki, K. (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry. 41, 7385–7390.

    Article  PubMed  CAS  Google Scholar 

  40. Matsuzaki, K. and Horikiri, C. (1999) Interactions of amyloid beta-peptide (1–40) with ganglioside-containing membranes. Biochemistry. 38, 4137–4142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Isabel Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hou, X., Small, D.H., Aguilar, MI. (2011). Surface Plasmon Resonance Spectroscopy: A New Lead in Studying the Membrane Binding of Amyloidogenic Transthyretin. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics