Skip to main content

Sample Preparation Procedure for Cellular Fungi

  • Protocol
2D PAGE: Sample Preparation and Fractionation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 425))

Summary

A crucial step in quantitative proteomics is an artefact free and reproducible sample preparation protocol, which has to be adapted and optimized to nearly all types of cells. Here we provide a sample preparation method for quantitative proteomics of cellular fungi. Two different protein extraction methods were compared with focus on reproducibility, minimized proteolytic degradation and protein losses during the sample preparation.

In the first preparation the cells were lysed by sonication followed by protein solubilization in “standard” lysis buffer. The second preparation was performed with a SDS-presolubilization step followed by sonication and further boiling, before diluting the sample with lysis buffer. We have shown that the sample preparation for cellular fungi is performed with maximum protein solubilization, higher reproducibility and a reduced proteolytic activity by including a SDS-presolubilization step in the sample preparation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sougioultzis, S., Simeonidis, S., Bhaskar, K. R., et al. (2006) Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem. Biophys Res Commun. 343, 69–76

    Article  CAS  PubMed  Google Scholar 

  2. Dalmasso, G., Loubat, A., Dahan, S., Calle, G., Rampal, P., and Czerucka, D. (2006) Saccharomyces boulardii prevents TNF-alpha-induced apoptosis in EHEC-infected T84 cells. Res. Microbiol. 164, 876–84.

    Google Scholar 

  3. Hardwidge, P. R., Donohoe, S., Aebersold, R., and Finlay, B. B. (2006) Proteomic analysis of the binding partners to enteropathogenic Escherichia coli virulence proteins expressed in Saccharomyces cerevisiae. Proteomics. 6 (7), 2174–79.

    Article  CAS  PubMed  Google Scholar 

  4. Jenkins, J. R., Pocklington, M. J., and Orr, E. (1990) The F1 ATP synthetase beta-subunit: a major yeast novobiocin binding protein. Cell Sci. Aug 96 ( Pt 4), 675–82.

    CAS  Google Scholar 

  5. Hermida, L., Brachat, S., Voegeli, S., Philippsen, P., and Primig, M. (2005) The Ashbya Genome Database (AGD) - a tool for the yeast community and genome biologists. Nucleic Acids Res. 33, 348–52.

    Article  Google Scholar 

  6. [No authors listed]. (1997) The yeast genome directory.Nature 387 (6632 Suppl) 5.

    Google Scholar 

  7. Jones, E. W. (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 19, 428–53.

    Article  Google Scholar 

  8. Groll, M. and Huber, R. (2005) Purification, crystallization, and X-ray analysis of the yeast 20S proteasome. Methods Enzymol. 398, 329–36.

    Article  CAS  PubMed  Google Scholar 

  9. McIntyre, J., Podlaska, A., Skoneczna, A., Halas, A., and Sledziewska-Gojska, E. (2006) Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae. Mutat Res. 593(1–2), 153–63.

    CAS  PubMed  Google Scholar 

  10. Garduno, E., Perez-Giraldo, C., Blanco, M.T., Hurtado, C., and Gomez-Garcia, A. C. (2005) Exposure to therapeutic concentrations of ritonavir, but not saquinavir, reduces secreted aspartyl proteinase of Candida parapsilosis. Chemotherapy 51 (5), 252–5.

    Article  PubMed  Google Scholar 

  11. Schmidt, M., Haas, W., Crosas, B., et al. (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 4, 294–303.

    Article  Google Scholar 

  12. Mima, J., Hayashidam, M., Fujii, T., et al. (2005) Structure of the carboxypeptidase Y inhibitor IC in complex with the cognate proteinase reveals a novel mode of the proteinase-protein inhibitor interaction. J. Mol. Biol. 346(5), 1323–34.

    Article  CAS  PubMed  Google Scholar 

  13. Takai, T., Kato, T., Sakata, Y., et al. (2003) Recombinant Der p 1 and Der f 1 exhibit cysteine protease activity but no serine protease activity. Mol. Biol. 328(4), 944–52.

    Google Scholar 

  14. Fotedar, R. and Al-Hedaithy, S. S. (2005) Comparison of phospholipase and proteinase activity in Candida albicans and C. dubliniensis. Mycoses 48(1), 62–7.

    Article  CAS  PubMed  Google Scholar 

  15. Görg, A., Weiss, W., and Dunn, M. J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 04(12), 3665–85.

    Article  Google Scholar 

  16. Williams,R. and Wilson, K. (1994) Methoden der Biochemie. Thieme-Verlag Stuttgart. New York, 3. Auflage 1994

    Google Scholar 

  17. Johnson, T. M., Holady, S. K., Sun, Y., Subramaniam, P. S., Johnson H. M., and Krishna, N. R. (1999) Purification, and characterization of interferon-tau produced in Pichia pastoris grown in a minimal medium. Interferon Cytokine Res. 19(6), 631–6.

    Article  CAS  Google Scholar 

  18. Harder, A., Wildgruber, R., Nawrocki, A., Fey, S. J., Larsen, P. M., and Gorg, A. (1999) Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20 (4–5), 826–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wildgruber, R., Reil, G., Drews, O., Parlar, H., and Gorg, A. (2002) Web-based two-dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2(6), 727–32.

    Article  CAS  PubMed  Google Scholar 

  20. Luche, S., Santoni, V., and Rabilloud, T. (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3(3), 249–53.

    Article  CAS  PubMed  Google Scholar 

  21. Görg, A. Two-Dimensional Electrophoresis of Proteins using Immobilized pH Gradients: online manual at: http://www.weihenstephan.de/ blm/deg/manual/manfrm.htm

  22. Rabilloud, T., Strub, J. M., Luche, S., Dorsselaer, A., and Lunardi, J. (2001) Comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1(5), 699–704.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Harder, A. (2008). Sample Preparation Procedure for Cellular Fungi. In: Posch, A. (eds) 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology™, vol 425. Humana Press. https://doi.org/10.1007/978-1-60327-210-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-210-0_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-209-4

  • Online ISBN: 978-1-60327-210-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics