Skip to main content

Neural Recording Using Digital Telemetry

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 54))

Abstract

Digital telemetry (DT) offers a method of collecting the electrical signals produced by neural activity and transmitting them wirelessly to a receiver/decoder for analysis and storage. The wirelessness means that activity can be recorded from a subject that is behaving relatively normally, which opens up a number of research and therapeutic opportunities – for example, in the study of spatial encoding, or in pre-seizure activity in an epileptic subject. In this chapter we first review the history of neural recording and describe the classic analog method of data processing, outlining the technical problems that need to be solved in collecting and transmitting tiny electrical signals within a noisy environment. We then outline digital signal processing together with the basic principles of telemetry, describing how DT solves these problems in a way that preserves signal fidelity while allowing subjects to move around in an unconstrained way. We finish by describing several situations in which DT is enabling advances to occur both in the laboratory and in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. New York: Clarendon Press. p 570.

    Google Scholar 

  2. Ranck JB, Jr., Kubie JL (2008) Historical perspective: place cells in Ann Arbor and Brooklyn. In: Mizumori SJ, editor. Hippocampal place fields: relevance to learning and memory. Oxford: Oxford University Press. xvii.

    Google Scholar 

  3. Renshaw B, Forbes A, Morison BR (1940) Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J Neurophysiol 3:74–105.

    Article  Google Scholar 

  4. Hubel DH (1957) Tungsten microelectrode for recording from single units. Science 125:549–550.

    Article  CAS  Google Scholar 

  5. Strumwasser F (1958) Long-term recording’ from single neurons in brain of unrestrained mammals. Science 127:469–470.

    Article  CAS  Google Scholar 

  6. Olds J (1965) Operant conditioning of single unit responses. Proceedings of the XXIII International Congress of Physiological Science, Tokyo.

    Google Scholar 

  7. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175.

    Article  Google Scholar 

  8. Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28:11250–11262.

    Article  CAS  Google Scholar 

  9. Lenck-Santini PP, Fenton AA, Muller RU (2008) Discharge properties of hippocampal neurons during performance of a jump avoidance task. J Neurosci 28:6773–6786.

    Article  CAS  Google Scholar 

  10. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171.

    Article  CAS  Google Scholar 

  11. Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418.

    Article  CAS  Google Scholar 

  12. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871.

    Article  CAS  Google Scholar 

  13. Barth DS (2003) Submillisecond synchronization of fast electrical oscillations in neocortex. J Neurosci 23:2502–2510.

    Article  CAS  Google Scholar 

  14. Bragin A, Jando G, Nadasdy Z, van Landeghem M, Buzsaki G (1995) Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. J Neurophysiol 73:1691–1705.

    Article  CAS  Google Scholar 

  15. Csicsvari J, Hirase H, Mamiya A, Buzsaki G (2000) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28:585–594.

    Article  CAS  Google Scholar 

  16. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330.

    Article  Google Scholar 

  17. Galton I (2002) Delta-sigma data conversion in wireless transceivers. IEEE Trans Microw Theory Tech 50:302–315.

    Article  Google Scholar 

  18. Mackay RS (1968) Bio-medical telemetry; sensing and transmitting biological information from animals and man. New York, Wiley. xi, 388.

    Google Scholar 

  19. Skutt HR, Beschle RG, Moulton DG, Koella WP (1967) New subminiature amplifier-transmitters for telemetering biopotentials. Electroencephalogr Clin Neurophysiol 22:275–277.

    Article  CAS  Google Scholar 

  20. Fenton AA, Muller RU (1996) Using digital video techniques to identify correlations between behavior and the activity of single neurons. J Neurosci Methods 70:211–227.

    Article  CAS  Google Scholar 

  21. Eggers AE (2007) Temporal lobe epilepsy is a disease of faulty neuronal resonators rather than oscillators, and all seizures are provoked, usually by stress. Med Hypotheses 69:1284–1289.

    Article  Google Scholar 

  22. Rhodes ME, Harney JP, Frye CA (2004) Gonadal, adrenal, and neuroactive steroids’ role in ictal activity. Brain Res 1000:8–18.

    Article  CAS  Google Scholar 

  23. Dragoi G, Buzsaki G (2006) Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50:145–157.

    Article  CAS  Google Scholar 

  24. Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848.

    Article  CAS  Google Scholar 

  25. Bragin A, Wilson CL, Engel J (2003) Spatial stability over time of brain areas generating fast ripples in the epileptic rat. Epilepsia 44:1233–1237.

    Article  Google Scholar 

  26. Lipska BK, Jaskiw GE, Chrapusta S, Karoum F, Weinberger DR (1992) Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res 585:1–6.

    Article  CAS  Google Scholar 

  27. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806.

    Article  CAS  Google Scholar 

  28. Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178.

    Article  CAS  Google Scholar 

  29. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264.

    Article  CAS  Google Scholar 

  30. Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308:1792–1794.

    Article  CAS  Google Scholar 

  31. Quirk GJ, Muller RU, Kubie JL, Ranck JB, Jr. (1992) The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci 12:1945–1963.

    Article  CAS  Google Scholar 

  32. Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143.

    Article  CAS  Google Scholar 

  33. Bragin A, Engel J, Jr., Wilson CL, Fried I, Buzsaki G (1999) High-frequency oscillations in human brain. Hippocampus 9:137–142.

    Article  CAS  Google Scholar 

  34. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The initial DT concept was developed in collaboration with Imre Szabo and Kalman Mathe as part of an EC Framework V Project (QLG3-CT-199-00192, “N APPY”). Portions of this work were supported by NINR Grant R41 NR009877-01A1, and NINDS Grants R43 NS057839-01 and R42 NS064474-02A1 to A.A.F, and by an EC Framework 7 Project (HEALTH-F2-2007-200873, “SPACEBRAIN”) to K.J.J and J.G.D. A.A.F. and J.G.D. are founders of Bio-Signal Group Corp., a company that develops digital telemetry for commercial applications. J.G.D. and K.J.J. founded Axona Ltd., a company that sells digital ­electrophysiology recording systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André A. Fenton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fenton, A.A., Jeffery, K.J., Donnett, J.G. (2011). Neural Recording Using Digital Telemetry. In: Vertes, R., Stackman Jr., R. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 54. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-202-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-202-5_4

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-201-8

  • Online ISBN: 978-1-60327-202-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics