A Whole-Genome Amplification Protocol for a Wide Variety of DNAs, Including Those from Formalin-Fixed and Paraffin-Embedded Tissue

  • Pamela L. Paris
Part of the Methods in Molecular Biology™ book series (MIMB, volume 556)


High-resolution genomic arrays and next-generation sequencers are some of the genome-based technologies poised to make significant contributions in the near future to basic and clinical science. The success of these technologies, and most certainly their translation into the clinic, will require that they produce high quality, reproducible data from small archived tumor specimens, including biopsies. DNA from patient samples, especially archival tissue, can be a limiting factor and lead to the need for amplification of the starting material. A variety of whole-genome amplification techniques are available, but choosing the most reliable, reproducible amplification technology that will be suitable for use across a wide spectrum of clinical specimens is essential. Sigma’s whole-genome amplification kit provides a robust, highly reliable, and versatile amplification system across a variety of DNA sources. This chapter will detail Sigma’s amplification protocol along with an optimized DNA extraction protocol for formalin-fixed and paraffin-embedded tissue.

Key words

Whole-genome amplification clinical specimens formalin-fixed paraffin-embedded DNA extraction array comparative genomic hybridization (aCGH) 


  1. 1.
    Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y. et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet, 20, 207–211.PubMedCrossRefGoogle Scholar
  2. 2.
    Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A., Carroll, P., Fridlyand, J., Jain, A.N., Kamkar, S., Kowbel, D., Krijtenburg, P.J. et al. (2003) High-resolution analysis of paraffin-embedded and formalin-fixed prostate tumors using comparative genomic hybridization to genomic microarrays. Am J Pathol, 162, 763–770.PubMedCrossRefGoogle Scholar
  3. 3.
    Paris, P.L., Sridharan, S., Scheffer, A., Tsalenko, A., Bruhn, L. and Collins, C. (2007) High resolution oligonucleotide CGH using DNA from archived prostate tissue. Prostate, 67, 1447–1455.PubMedCrossRefGoogle Scholar
  4. 4.
    Monzon, F.A., Hagenkord, J.M., Lyons-Weiler, M.A., Balani, J.P., Parwani, A.V., Sciulli, C.M., Li, J., Chandran, U.R., Bastacky, S.I. and Dhir, R. (2008) Whole genome SNP arrays as a potential diagnostic tool for the detection of characteristic chromosomal aberrations in renal epithelial tumors. Mod Pathol, 21, 599–608.Google Scholar
  5. 5.
    Thompson, E.R., Herbert, S.C., Forrest, S.M. and Campbell, I.G. (2005) Whole genome SNP arrays using DNA derived from formalin-fixed, paraffin-embedded ovarian tumor tissue. Hum Mutat, 26, 384–389.PubMedCrossRefGoogle Scholar
  6. 6.
    Mardis, E.R. (2008) The impact of next-generation sequencing technology on genetics. Trends Genet, 24, 133–141.PubMedCrossRefGoogle Scholar
  7. 7.
    Schuster, S.C. (2008) Next-generation sequencing transforms today’s biology. Nat Methods, 5, 16–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W. and Arnheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A, 89, 5847–5851.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheung, V.G. and Nelson, S.F. (1996) Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc Natl Acad Sci U S A, 93, 14676–14679.PubMedCrossRefGoogle Scholar
  10. 10.
    Klein, C.A., Schmidt-Kittler, O., Schardt, J.A., Pantel, K., Speicher, M.R. and Riethmuller, G. (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A, 96, 4494–4499.PubMedCrossRefGoogle Scholar
  11. 11.
    Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J. et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A, 99, 5261–5266.PubMedCrossRefGoogle Scholar
  12. 12.
    Lage, J.M., Leamon, J.H., Pejovic, T., Hamann, S., Lacey, M., Dillon, D., Segraves, R., Vossbrinck, B., Gonzalez, A., Pinkel, D. et al. (2003) Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res, 13, 294–307.PubMedCrossRefGoogle Scholar
  13. 13.
    Little, S.E., Vuononvirta, R., Reis-Filho, J.S., Natrajan, R., Iravani, M., Fenwick, K., Mackay, A., Ashworth, A., Pritchard-Jones, K. and Jones, C. (2006) Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics, 87, 298–306.PubMedCrossRefGoogle Scholar
  14. 14.
    Lizardi, P.M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D.C. and Ward, D.C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet, 19, 225–232.PubMedCrossRefGoogle Scholar
  15. 15.
    Pirker, C., Raidl, M., Steiner, E., Elbling, L., Holzmann, K., Spiegl-Kreinecker, S., Aubele, M., Grasl-Kraupp, B., Marosi, C., Micksche, M. et al. (2004) Whole genome amplification for CGH analysis: linker-adapter PCR as the method of choice for difficult and limited samples. Cytometry A, 61, 26–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, G., Maher, E., Brennan, C., Chin, L., Leo, C., Kaur, M., Zhu, P., Rook, M., Wolfe, J.L. and Makrigiorgos, G.M. (2004) DNA amplification method tolerant to sample degradation. Genome Res, 14, 2357–2366.PubMedCrossRefGoogle Scholar
  17. 17.
    Bagheri-Yarmand, R., Mazumdar, A., Sahin, A.A. and Kumar, R. (2006) LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer, 118, 2703–2710.PubMedCrossRefGoogle Scholar
  18. 18.
    Hittelman, A., Sridharan, S., Roy, R., Fridlyand, J., Loda, M., Collins, C. and Paris, P.L. (2007) Evaluation of whole genome amplification protocols for array and oligonucleotide CGH. Diagnostic Molecular Pathology, 16, 198–206.PubMedCrossRefGoogle Scholar
  19. 19.
    Paris, P.L., Andaya, A., Fridlyand, J., Jain, A.N., Weinberg, V., Kowbel, D., Brebner, J.H., Simko, J., Watson, J.E., Volik, S. et al. (2004) Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum Mol Genet, 13, 1303–1313.PubMedCrossRefGoogle Scholar
  20. 20.
    van Dekken, H., Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A., Kowbel, D., van der Kwast, T.H., Pinkel, D., Schroder, F.H., Vissers, K.J. et al. (2004) Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarcinomas by high-resolution genomic array analysis. Genes Chromosomes Cancer, 39, 249–256.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang, Q., Schantz, S.P., Rao, P.H., Mo, J., McCormick, S.A. and Chaganti, R.S. (2000) Improving degenerate oligonucleotide primed PCR-comparative genomic hybridization for analysis of DNA copy number changes in tumors. Genes Chromosomes Cancer, 28, 395–403.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pamela L. Paris
    • 1
  1. 1.Department of UrologyUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations