Skip to main content

A Whole-Genome Amplification Protocol for a Wide Variety of DNAs, Including Those from Formalin-Fixed and Paraffin-Embedded Tissue

  • Protocol
  • First Online:
Microarray Analysis of the Physical Genome

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 556))

Abstract

High-resolution genomic arrays and next-generation sequencers are some of the genome-based technologies poised to make significant contributions in the near future to basic and clinical science. The success of these technologies, and most certainly their translation into the clinic, will require that they produce high quality, reproducible data from small archived tumor specimens, including biopsies. DNA from patient samples, especially archival tissue, can be a limiting factor and lead to the need for amplification of the starting material. A variety of whole-genome amplification techniques are available, but choosing the most reliable, reproducible amplification technology that will be suitable for use across a wide spectrum of clinical specimens is essential. Sigma’s whole-genome amplification kit provides a robust, highly reliable, and versatile amplification system across a variety of DNA sources. This chapter will detail Sigma’s amplification protocol along with an optimized DNA extraction protocol for formalin-fixed and paraffin-embedded tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y. et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet, 20, 207–211.

    Article  PubMed  CAS  Google Scholar 

  2. Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A., Carroll, P., Fridlyand, J., Jain, A.N., Kamkar, S., Kowbel, D., Krijtenburg, P.J. et al. (2003) High-resolution analysis of paraffin-embedded and formalin-fixed prostate tumors using comparative genomic hybridization to genomic microarrays. Am J Pathol, 162, 763–770.

    Article  PubMed  CAS  Google Scholar 

  3. Paris, P.L., Sridharan, S., Scheffer, A., Tsalenko, A., Bruhn, L. and Collins, C. (2007) High resolution oligonucleotide CGH using DNA from archived prostate tissue. Prostate, 67, 1447–1455.

    Article  PubMed  CAS  Google Scholar 

  4. Monzon, F.A., Hagenkord, J.M., Lyons-Weiler, M.A., Balani, J.P., Parwani, A.V., Sciulli, C.M., Li, J., Chandran, U.R., Bastacky, S.I. and Dhir, R. (2008) Whole genome SNP arrays as a potential diagnostic tool for the detection of characteristic chromosomal aberrations in renal epithelial tumors. Mod Pathol, 21, 599–608.

    Google Scholar 

  5. Thompson, E.R., Herbert, S.C., Forrest, S.M. and Campbell, I.G. (2005) Whole genome SNP arrays using DNA derived from formalin-fixed, paraffin-embedded ovarian tumor tissue. Hum Mutat, 26, 384–389.

    Article  PubMed  CAS  Google Scholar 

  6. Mardis, E.R. (2008) The impact of next-generation sequencing technology on genetics. Trends Genet, 24, 133–141.

    Article  PubMed  CAS  Google Scholar 

  7. Schuster, S.C. (2008) Next-generation sequencing transforms today’s biology. Nat Methods, 5, 16–18.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W. and Arnheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A, 89, 5847–5851.

    Article  PubMed  CAS  Google Scholar 

  9. Cheung, V.G. and Nelson, S.F. (1996) Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc Natl Acad Sci U S A, 93, 14676–14679.

    Article  PubMed  CAS  Google Scholar 

  10. Klein, C.A., Schmidt-Kittler, O., Schardt, J.A., Pantel, K., Speicher, M.R. and Riethmuller, G. (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A, 96, 4494–4499.

    Article  PubMed  CAS  Google Scholar 

  11. Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J. et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A, 99, 5261–5266.

    Article  PubMed  CAS  Google Scholar 

  12. Lage, J.M., Leamon, J.H., Pejovic, T., Hamann, S., Lacey, M., Dillon, D., Segraves, R., Vossbrinck, B., Gonzalez, A., Pinkel, D. et al. (2003) Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res, 13, 294–307.

    Article  PubMed  CAS  Google Scholar 

  13. Little, S.E., Vuononvirta, R., Reis-Filho, J.S., Natrajan, R., Iravani, M., Fenwick, K., Mackay, A., Ashworth, A., Pritchard-Jones, K. and Jones, C. (2006) Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics, 87, 298–306.

    Article  PubMed  CAS  Google Scholar 

  14. Lizardi, P.M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D.C. and Ward, D.C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet, 19, 225–232.

    Article  PubMed  CAS  Google Scholar 

  15. Pirker, C., Raidl, M., Steiner, E., Elbling, L., Holzmann, K., Spiegl-Kreinecker, S., Aubele, M., Grasl-Kraupp, B., Marosi, C., Micksche, M. et al. (2004) Whole genome amplification for CGH analysis: linker-adapter PCR as the method of choice for difficult and limited samples. Cytometry A, 61, 26–34.

    Article  PubMed  Google Scholar 

  16. Wang, G., Maher, E., Brennan, C., Chin, L., Leo, C., Kaur, M., Zhu, P., Rook, M., Wolfe, J.L. and Makrigiorgos, G.M. (2004) DNA amplification method tolerant to sample degradation. Genome Res, 14, 2357–2366.

    Article  PubMed  CAS  Google Scholar 

  17. Bagheri-Yarmand, R., Mazumdar, A., Sahin, A.A. and Kumar, R. (2006) LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer, 118, 2703–2710.

    Article  PubMed  CAS  Google Scholar 

  18. Hittelman, A., Sridharan, S., Roy, R., Fridlyand, J., Loda, M., Collins, C. and Paris, P.L. (2007) Evaluation of whole genome amplification protocols for array and oligonucleotide CGH. Diagnostic Molecular Pathology, 16, 198–206.

    Article  PubMed  CAS  Google Scholar 

  19. Paris, P.L., Andaya, A., Fridlyand, J., Jain, A.N., Weinberg, V., Kowbel, D., Brebner, J.H., Simko, J., Watson, J.E., Volik, S. et al. (2004) Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum Mol Genet, 13, 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  20. van Dekken, H., Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A., Kowbel, D., van der Kwast, T.H., Pinkel, D., Schroder, F.H., Vissers, K.J. et al. (2004) Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarcinomas by high-resolution genomic array analysis. Genes Chromosomes Cancer, 39, 249–256.

    Article  PubMed  Google Scholar 

  21. Huang, Q., Schantz, S.P., Rao, P.H., Mo, J., McCormick, S.A. and Chaganti, R.S. (2000) Improving degenerate oligonucleotide primed PCR-comparative genomic hybridization for analysis of DNA copy number changes in tumors. Genes Chromosomes Cancer, 28, 395–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Paris, P.L. (2009). A Whole-Genome Amplification Protocol for a Wide Variety of DNAs, Including Those from Formalin-Fixed and Paraffin-Embedded Tissue. In: Pollack, J. (eds) Microarray Analysis of the Physical Genome. Methods in Molecular Biology™, vol 556. Humana Press. https://doi.org/10.1007/978-1-60327-192-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-192-9_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-191-2

  • Online ISBN: 978-1-60327-192-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics