Comparative Genomic Hybridization on Spotted Oligonucleotide Microarrays

  • Young H. Kim
  • Jonathan R. Pollack
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 556)

Abstract

Recent advances in DNA microarray technology have enabled researchers to comprehensively characterize the complex genomes of higher eukaryotic organisms at an unprecedented level of detail. Array-based comparative genomic hybridization (Array-CGH) has been widely used for detecting DNA copy number alterations on a genomic scale, where the mapping resolution is limited only by the number of probes on the DNA microarray. In this chapter, we present a validated protocol utilizing print-tip spotted HEEBO (Human Exonic Evidence Based Oligonucleotide) microarrays for conducting array-CGH using as little as 25 ng of genomic DNA from a wide variety of sources, including cultured cell lines and clinical specimens, with high spatial resolution and array-to-array reproducibility.

Key words

DNA microarray array-CGH comparative genomic hybridization HEEBO post-processing epoxysilane whole-genome amplification 

References

  1. 1.
    Ylstra, B., van den Ijssel, P., Carvalho, B., Brakenhoff, R. H., and Meijer, G. A. (2006) BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res. 34, 445–450.PubMedCrossRefGoogle Scholar
  2. 2.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  3. 3.
    Wodicka, L., Dong, H., Mittmann, M., Ho, M. H., and Lockhart, D. J. (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 15, 1359–1367.PubMedCrossRefGoogle Scholar
  4. 4.
    Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.PubMedCrossRefGoogle Scholar
  5. 5.
    Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G., and Brown, E. L. (2000) Genomic analysis of gene expression in C. elegans. Science 290, 809–812.PubMedCrossRefGoogle Scholar
  6. 6.
    Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347.PubMedCrossRefGoogle Scholar
  7. 7.
    Ramaswamy, S., Ross, K. N., Lander, E. S., and Golub, T. R. (2003) A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M., et al. (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305.PubMedCrossRefGoogle Scholar
  9. 9.
    Barrett, M. T., Scheffer, A., Ben-Dor, A., Sampas, N., Lipson, D., Kincaid, R., et al. (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl. Acad. Sci. U S A 101, 17765–17770.PubMedCrossRefGoogle Scholar
  10. 10.
    Carvalho, B., Ouwerkerk, E., Meijer, G. A., and Ylstra, B. (2004) High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 57, 644–646.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao, X., Li, C., Paez, J. G., Chin, K., Janne, P. A., Chen, T. H., et al. (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–3071.PubMedCrossRefGoogle Scholar
  12. 12.
    Kwei, K. A., Kim, Y. H., Girard, L., Kao, J., Pacyna-Gengelbach, M., Salari, K., et al. (2008) Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 27, 3635–3640.PubMedCrossRefGoogle Scholar
  13. 13.
    Friedman, J. M., Baross, A., Delaney, A. D., Ally, A., Arbour, L., Armstrong, L., et al. (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am. J. Hum. Genet. 79, 500–513.PubMedCrossRefGoogle Scholar
  14. 14.
    Ming, J. E., Geiger, E., James, A. C., Ciprero, K. L., Nimmakayalu, M., Zhang, Y., et al. (2006) Rapid detection of submicroscopic chromosomal rearrangements in children with multiple congenital anomalies using high density oligonucleotide arrays. Hum. Mutat. 27, 467–473.PubMedCrossRefGoogle Scholar
  15. 15.
    Balciuniene, J., Feng, N., Iyadurai, K., Hirsch, B., Charnas, L., Bill, B. R., et al. (2007) Recurrent 10q22–q23 deletions: a genomic disorder on 10q associated with cognitive and behavioral abnormalities. Am. J. Hum. Genet. 80, 938–947.PubMedCrossRefGoogle Scholar
  16. 16.
    Pinkel, D., and Albertson, D. G. (2005) Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37 Suppl, S11–S17.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Young H. Kim
    • 1
  • Jonathan R. Pollack
    • 1
  1. 1.Department of PathologyStanford UniversityStanfordUSA

Personalised recommendations