Combining Chromatin Immunoprecipitation and Oligonucleotide Tiling Arrays (ChIP-Chip) for Functional Genomic Studies

  • Jérôme Eeckhoute
  • Mathieu Lupien
  • Myles Brown
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 556)

Abstract

Central to systems biology are genome-wide technologies and high-throughput experimental approaches. Completion of the sequencing of the human genome as well as those of a number of other higher eukaryotes now allows for the first time the mapping of all of the cis-regulatory regions of genes as well as the details of nucleosome position and modification. One approach to achieving this goal involves chromatin immunoprecipitation combined with DNA oligonucleotide tiling arrays (ChIP-chip). This allows for the identification of genomic regions bound by a given factor, its cistrome, or harboring a given epigenomic modification through hybridization on tiling arrays covering the entire genome or specific regions of interest. This technology offers an unbiased assessment of the potential biological function of any DNA associated factor or epigenomic mark. Through integration of ChIP-chip data with complementary genome-wide approaches including expression profiling, CGH and SNP arrays, novel paradigms of transcriptional regulation and chromatin structure are emerging.

Key words

Chromatin immunoprecipitation tiling arrays ChIP-chip epigenetic epigenomic genomic cistrome 

Notes

Acknowledgments

The authors are indebted to Drs. Jason Carroll and Timothy Geistlinger for advice on the ChIP-chip procedure.

References

  1. 1.
    Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694, 696, 698PubMedCrossRefGoogle Scholar
  2. 2.
    Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson DS, Li W, Gordon DB, Bhattacharjee A, Curry B, Ghosh J, Brizuela L, Carroll JS, Brown M, Flicek P, Koch CM, Dunham I, Bieda M, Xu X, Farnham PJ, Kapranov P, Nix DA, Gingeras TR, Zhang X, Holster H, Jiang N, Green RD, Song JS, McCuine SA, Anton E, Nguyen L, Trinklein ND, Ye Z, Ching K, Hawkins D, Ren B, Scacheri PC, Rozowsky J, Karpikov A, Euskirchen G, Weissman S, Gerstein M, Snyder M, Yang A, Moqtaderi Z, Hirsch H, Shulha HP, Fu Y, Weng Z, Struhl K, Myers RM, Lieb JD, Liu XS (2008) Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res 18:393–403PubMedCrossRefGoogle Scholar
  4. 4.
    Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132:958–970PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392PubMedCrossRefGoogle Scholar
  6. 6.
    Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38:1289–1297PubMedCrossRefGoogle Scholar
  7. 7.
    Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci USA 103:12457–12462PubMedCrossRefGoogle Scholar
  9. 9.
    O'Geen H, Nicolet CM, Blahnik K, Green R, Farnham PJ (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41:577–580PubMedCrossRefGoogle Scholar
  10. 10.
    Chaya D, Zaret KS (2004) Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol 376:361–372PubMedCrossRefGoogle Scholar
  11. 11.
    Ray S, Das SK (2006) Chromatin immunoprecipitation assay detects ERalpha recruitment to gene specific promoters in uterus. Biol Proced Online 8:69–76PubMedCrossRefGoogle Scholar
  12. 12.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jérôme Eeckhoute
    • 1
  • Mathieu Lupien
    • 1
  • Myles Brown
    • 1
  1. 1.Division of Molecular and Cellular OncologyHarvard Medical School, Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations