Synthesis and Nonradioactive Micro-analysis of Diphosphoinositol Phosphates by HPLC with Postcolumn Complexometry

  • Hongying Lin
  • Karsten Lindner
  • Georg W. MayrEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 645)


A nonradioactive high-performance anion-exchange chromatographic method based on MDD-HPLC (Mayr Biochem. J. 254:585–591, 1988) was developed for the separation of inositol hexakisphosphate (InsP 6, phytic acid) and most isomers of pyrophosphorylated inositol phosphates, such as diphosphoinositol pentakisphosphate (PPInsP 5 or InsP 7) and bis-diphosphoinositol tetrakisphosphate (bisPPInsP 4 or InsP 8). With an acidic elution, the anion-exchange separation led to the resolution of four separable PPInsP 5 isomers (including pairs of enantiomers) into three peaks and of nine separable bisPPInsP 4 isomers into nine peaks. The whole separation procedure was completed within 20–36 min after optimization. Reference standards of all bisPPInsP 4 isomers were generated by a nonenzymatic shotgun synthesis from InsP 6. Hereby, the phosphorylation was brought about nonenzymatically when concentrated InsP 6 bound to the solid surface of anion-exchange beads was incubated with creatine phosphate under optimal pH conditions. From the mixture of pyrophosphorylated InsP 6 derivatives containing all theoretically possible isomers of PPInsP 5, bisPPInsP 4, and also some isomers of trisPPInsP 3, isomers were separated by anion-exchange chromatography and fractions served as reference standards of bisPPInsP 4 isomers for further investigation. Their isomeric nature could be partly assigned by comparison with position specifically synthesized or NMR-characterized purified protozoan reference compounds and partly by limited hydrolysis to PPInsP 5 isomers. By applying this nonradioactive analysis technique to cellular studies, the isomeric nature of the major bisPPInsP 4 in mammalian cells could be identified without the need to obtain sufficient material for NMR analysis.

Key words

Inositol phosphate Pyrophosphates Signal transduction Metal-dye detection HPLC 



The authors would like to thank Professor Gunter Vogel (Wuppertal, Germany) for providing the 1/3,5-bisPPInsP 4 isomer from Polysphondylium, and Professor J.R. Falck (UT Southwestern, Dallas, USA) for providing a synthetic 2,5-bisPPInsP 4 sample and pure PPInsP 5 isomers. Parts of the MDD-HPLC analysis have been performed by Bettina Serreck, whose technical support is highly acknowledged.


  1. 1.
    Mayr, G.W. (1988) A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem. J. 254, 585–591.PubMedGoogle Scholar
  2. 2.
    Pittet, D., Schlegel, W., Lew, D., Monod, A., and Mayr, G. (1989) Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J. Biol. Chem. 264, 18489–18493.PubMedGoogle Scholar
  3. 3.
    Lorke, D.E., Gustke, H., and Mayr, G.W. (2004) An optimized fixation and extraction technique for high resolution of inositol phosphate signals in rodent brain. Neurochem. Res. 29, 1887–1896.CrossRefPubMedGoogle Scholar
  4. 4.
    Martin, J.B., Foray, M.F., Klein, G., and Satre, M. (1987) Identification of inositol hexa­phos­phate in 31P-NMR spectra of Dictyostelium discoideum amoebae. Relevance to intracellular pH determination. Biochim. Biophys. Acta. 931, 16–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Safrany, S.T., Caffrey, J.J., Yang, X., and Shears, S.B. (1999) Diphosphoinositol polyphosphates: the final frontier for inositide research? Biol. Chem. 380, 945–951.CrossRefPubMedGoogle Scholar
  6. 6.
    Menniti, F., Miller, R., Putney, J., Jr, and Shears, S. (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268, 3850–3856.PubMedGoogle Scholar
  7. 7.
    Europe-Finner, G.N., Gammon, B., Wood, C.A., and Newell, P.C. (1989) Inositol tris- and polyphosphate formation during chemotaxis of Dictyostelium. J. Cell Sci. 93, 585–592.PubMedGoogle Scholar
  8. 8.
    Mayr, G.W., Radenberg, T., Thiel, U., Vogel, G., and Stephens, L.R. (1992) Phosphoinositol disphosphates: non-enzymic formation in vitro and occurence in vivo in the cellular slime mold Dictyostelium. Carbohydr. Res. 234, 247–262.CrossRefGoogle Scholar
  9. 9.
    Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.H., Dell, A., Jackson, T.R., Hawkins, P.T., Mayr, G.W., Stephens, L.R., Stanley, A.F., Moore, T., Poyner, D.R., Morris, P.J., Hanley, M.R., Kay, R.R., Irvine, R.F., Laussmann, T., Eujen, R., Weisshuhn, C.M., Martin, J.B., Bakker-Grunwald, T., Klein, G., Reddy, K.M., Reddy, K.K., and Falck, J.R. (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s) myo-inositol pentakisphosphates. J. Biol. Chem. 268, 4009–4015.PubMedGoogle Scholar
  10. 10.
    Albert, C., Safrany, S.T., Bembenek, M.E., Reddy, K.M., Reddy, K., Falck, J., Brocker, M., Shears, S.B., and Mayr, G.W. (1997) Biological variability in the structures of diphosphoino­sitol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327, 553–560.PubMedGoogle Scholar
  11. 11.
    Laussmann, T., Reddy, K.M., Reddy, K.K., Falck, J.R., and Vogel, G. (1997) Diphospho-myo-inositol phosphates from Dictyostelium identified as D-6-diphospho-myo-inositol penta­kisphosphate and D-5,6-bisdiphospho-myo-inositol tetrakisphosphate. Biochem. J. 322, 31–33.PubMedGoogle Scholar
  12. 12.
    Laussmann, T., Hansen, A., Reddy, K.M., Reddy, K.K., Falck, J.R., and Vogel, G. (1998) Diphospho-myo-inositol phosphates in Dictyo­stelium and Polysphondylium: identification of a new bisdiphospho-myo-inositol tetrakisphosphate. FEBS Lett. 426, 145–150.CrossRefPubMedGoogle Scholar
  13. 13.
    Martin, J.-B., Bakker-Grunwald, T., and Klein, G. (1993) 31P-NMR analysis of Entamoeba histoly­tica. Occurrence of high amounts of two inositol phosphates. Eur. J. Biochem. 214, 711–718.CrossRefPubMedGoogle Scholar
  14. 14.
    Bennett, M., Onnebo, S.M., Azevedo, C., and Saiardi, A. (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol. Life Sci. 63, 552–564.CrossRefPubMedGoogle Scholar
  15. 15.
    York, J.D. (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta. 1761, 552–559.PubMedGoogle Scholar
  16. 16.
    Irvine, R.F. (2006) Nuclear inositide signalling – expansion, structures and clarification. Biochim. Biophys. Acta. 1761, 505–508.PubMedGoogle Scholar
  17. 17.
    Luo, H.R., Saiardi, A., Yu, H., Nagata, E., Ye, K., and Snyder, S.H. (2002) Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase C1 mutant yeast. Biochemistry. 41, 2509–2515.CrossRefPubMedGoogle Scholar
  18. 18.
    Luo, H.R., Huang, Y.E., Chen, J.C., Saiardi, A., Iijima, M., Ye, K., Huang, Y., Nagata, E., Devreotes, P., and Snyder, S.H. (2003) Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell. 114, 559–572.CrossRefPubMedGoogle Scholar
  19. 19.
    York, S.J., Armbruster, B.N., Greenwell, P., Petes, T.D., and York, J.D. (2005) Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269.CrossRefPubMedGoogle Scholar
  20. 20.
    Saiardi, A., Resnick, A.C., Snowman, A.M., Wendland, B., Snyder, S.H., Bhandari, R., Pesesse, X., Choi, K., Zhang, T., Shears, S.B., Luo, H.R., Huang, Y.E., Chen, J.C., Iijima, M., Ye, K., Huang, Y., Nagata, E., Devreotes, P., El Alami, M., Messenguy, F., Scherens, B., Dubois, E., Sciambi, C., McCaffery, J.M., Yu, H., Menniti, F.S., Miller, R.N., and Putney, J.W., Jr. (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases phosphorylation of proteins by inositol pyrophosphates. Proc. Natl. Acad. Sci. USA 102, 1911–1914.CrossRefPubMedGoogle Scholar
  21. 21.
    York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R. (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 285, 96–100.CrossRefPubMedGoogle Scholar
  22. 22.
    Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO. (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science. 318, 1299–1302.CrossRefPubMedGoogle Scholar
  23. 23.
    Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M., and Snyder, S.H. (2004) Phosphorylation of proteins by inositol pyrophosphates. Science. 306, 2101–2105.CrossRefPubMedGoogle Scholar
  24. 24.
    Choi, K., Mollapour, E., and Shears, S.B. (2005) Signal transduction during envi­ronmental stress: InsP(8) operates within highly restricted contexts. Cell. Signal. 17, 1533–1541.CrossRefPubMedGoogle Scholar
  25. 25.
    Pesesse, X., Choi, K., Zhang, T., and Shears, S.B. (2004) Signaling by higher inositolpolyphosphates: hyperosmotic stress acutely and selectively activates synthesis of bis-diphosphoinositol tetrakisphosphate (“InsP8”). J. Biol. Chem. 279, 43378–43381.CrossRefPubMedGoogle Scholar
  26. 26.
    Draskovic, P., Saiardi, A., Bhandari, R., Burton, A., Ilc, G., Kovacevic, M., Snyder, S.H., and Podobnik, M. (2008) Inositol hexakisphosphate kinase products contain diphosphate and tri­phosphate groups. Chem. Biol. 15, 274–286.CrossRefPubMedGoogle Scholar
  27. 27.
    Segel, I.H. (1976) Biochemical calculations: how to solve mathematical problems in general biochemistry. 2nd ed. New York: John Wiley & Sons Inc., pp. 15.Google Scholar
  28. 28.
    Lide, D.R. (2006) CRC Handbook Chemistry and Physics. 87th ed: Taylor & Francis Group, New York, pp. 8–41.Google Scholar
  29. 29.
    Lanzetta, P.A., Alvarez, L.J., Reinach, P.S., and Candia, O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95–97.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Biochemie und Molekularbiologie I: Zelluläre SignaltransduktionUniversitätsklinikum Hamburg-EppendorfHamburgGermany

Personalised recommendations