Advertisement

Molecular Manipulation and Analysis of Inositol Phosphate and Pyrophosphate Levels in Mammalian Cells

  • James C. Otto
  • John D. York
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 645)

Abstract

Lipid-derived inositol phosphates (InsPs) comprise a family of second messengers that arise through the action of six classes of InsP kinases, generally referred to as IPKs. Genetic studies have indicated that InsPs play critical roles in embryonic development, but the mechanisms of action for InsPs in mammalian cellular function are largely unknown. This chapter outlines a method for manipulating cellular InsP profiles through the coexpression of a constitutively active G protein and various IPKs. It provides a mechanism by which the metabolism of a variety of InsPs can be upregulated, enabling the evaluation of the effects of these InsPs on cellular functions.

Key words:

Inositol phosphate G protein Phospholipase C HPLC Second messenger Signal transduction 

Notes

Acknowledgments

This work was supported by funds from the Howard Hughes Medical Institute and from the National Institute of Health Grants HL-55672 and DK-070272. We thank members of the York laboratory for their contributions to the study of IPKs.

References

  1. 1.
    Berridge, M. J., & Irvine, R. F. (1989) Inositol phosphates and cell signalling. Nature. 341, 197–205.CrossRefPubMedGoogle Scholar
  2. 2.
    Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312.CrossRefPubMedGoogle Scholar
  3. 3.
    Majerus, P. W. (1992) Inositol phosphate biochemistry. Annu. Rev. Biochem. 61, 225–250.CrossRefPubMedGoogle Scholar
  4. 4.
    Irvine, R. F., Schell, M. J. (2001) Back in the water: the return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2, 327–338.CrossRefPubMedGoogle Scholar
  5. 5.
    Bennett, M., Onnebo, S. M., Azevedo, C., Saiardi, A. (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol. Life Sci. 63, 552–564.CrossRefPubMedGoogle Scholar
  6. 6.
    Irvine, R. (2007) Cell signaling. The art of the soluble. Science. 316, 845–846.CrossRefPubMedGoogle Scholar
  7. 7.
    Shears, S. B. (2004) How versatile are inositol phosphate kinases? Biochem. J. 377, 265–280.CrossRefPubMedGoogle Scholar
  8. 8.
    York, J. D. (2006) Regulation of nuclear processes by inositol polyphosphates. Biochimica et biophysica acta. 1761, 552–559.PubMedGoogle Scholar
  9. 9.
    Bhandari, R., Chakraborty, A., & Snyder, S. H. (2007) Inositol pyrophosphate pyrotechnics. Cell Metab. 5, 321–323.CrossRefPubMedGoogle Scholar
  10. 10.
    Onnebo, S. M., Saiardi, A. (2007) Inositol pyrophosphates get the vip1 treatment. Cell. 129, 647–649.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee, Y. S., Mulugu, S., York, J. D., & O’Shea, E. K. (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science. 316, 109–112.CrossRefPubMedGoogle Scholar
  12. 12.
    Frederick, J. P., Mattiske, D., Wofford, J. A., Megosh, L. C., Drake, L. Y., Chiou, S.-T., Hogan, B. L. M., & York, J. D. (2005) An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. PNAS. 102, 8454–8459.CrossRefPubMedGoogle Scholar
  13. 13.
    Verbsky, J., Lavine, K., & Majerus, P. W. (2005) Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression. PNAS. 102, 8448–8453.CrossRefPubMedGoogle Scholar
  14. 14.
    Choi, K. Y., Kim, H. K., Lee, S. Y., Moon, K. H., Sim, S. S., Kim, J. W., Chung, H. K., & Rhee, S. G. (1990) Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science. 248, 64–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Irvine, R. F., Letcher, A. J., Heslop, J. P., & Berridge, M. J. (1986) The inositol tris/tetrakisphosphate pathway – demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 320, 631–634.CrossRefPubMedGoogle Scholar
  16. 16.
    Takazawa, K., Lemos, M., Delvaux, A., Lejeune, C., Dumont, J. E., & Erneux, C. (1990) Rat brain inositol 1,4,5-trisphosphate 3-kinase. Ca2(+)-sensitivity, purification and antibody production. Biochem. J. 268, 213–217.PubMedGoogle Scholar
  17. 17.
    Wilson, M. P., & Majerus, P. W. (1996) Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J. Biol. Chem. 271, 11904–11910.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang, X., & Shears, S. B. (2000) Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase. Biochem. J. 351(Pt 3), 551–555.CrossRefPubMedGoogle Scholar
  19. 19.
    Chang, S. C., Miller, A. L., Feng, Y., Wente, S. R., & Majerus, P. W. (2002) The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J. Biol. Chem. 277, 43836–43843.CrossRefPubMedGoogle Scholar
  20. 20.
    Nalaskowski, M. M., Deschermeier, C., Fanick, W., & Mayr, G. W. (2002) The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization. Biochem. J. 366, 549–556.CrossRefPubMedGoogle Scholar
  21. 21.
    Odom, A. R., Stahlberg, A., Wente, S. R., & York, J. D. (2000) A role for nuclear Inositol 1,4,5-Trisphosphate Kinase in transcriptional control. Science. 287, 2026–2029.CrossRefPubMedGoogle Scholar
  22. 22.
    Saiardi, A., Caffrey, J. J., Snyder, S. H., & Shears, S. B. (2000) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 468, 28–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Verbsky, J. W., Wilson, M. P., Kisseleva, M. V., Majerus, P. W., & Wente, S. R. (2002) The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase. J. Biol. Chem. 277, 31857–31862.CrossRefPubMedGoogle Scholar
  24. 24.
    York, J. D., Odom, A. R., Murphy, R., Ives, E. B., & Wente, S. R. (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 285, 96–100.CrossRefPubMedGoogle Scholar
  25. 25.
    Saiardi, A., Caffrey, J. J., Snyder, S. H., & Shears, S. B. (2000) The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J. Biol. Chem. 275, 24686–24692.CrossRefPubMedGoogle Scholar
  26. 26.
    Saiardi, A., Erdjument-Bromage, H., Snowman, A. M., Tempst, P., & Snyder, S. H. (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323–1326.CrossRefPubMedGoogle Scholar
  27. 27.
    York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D., & York, J. D. (2005) Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269.CrossRefPubMedGoogle Scholar
  28. 28.
    Laussmann, T., Eujen, R., Weisshuhn, C. M., Thiel, U., & Vogel, G. (1996) Structures of diphospho-myo-inositol pentakisphosphate and bisdiphospho-myo-inositol tetrakisphosphate from Dictyostelium resolved by NMR analysis. Biochem. J. 315, 715–720.PubMedGoogle Scholar
  29. 29.
    Mulugu, S., Bai, W., Fridy, P. C., Bastidas, R. J., Otto, J. C., Dollins, D. E., Haystead, T. A., Ribeiro, A. A., & York, J. D. (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science. 316, 106–109.CrossRefPubMedGoogle Scholar
  30. 30.
    Choi, J. H., Williams, J., Cho, J., Falck, J. R., & Shears, S. B. (2007) Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J. Biol. Chem. 282, 30763–30775.CrossRefPubMedGoogle Scholar
  31. 31.
    Fridy, P. C., Otto, J. C., Dollins, D. E., & York, J. D. (2007) Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakis-phosphate kinases. J. Biol. Chem. 282, 30754–30762.CrossRefPubMedGoogle Scholar
  32. 32.
    Lin, H., Fridy, P. C., Ribeiro, A. A., Choi, J. H., Barma, D. K., Vogel, G., Falck, J. R., Shears, S. B., York, J. D., & Mayr, G. W. (2009) Structural ana­lysis and detection of biological inositol pyro­phosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J. Biol. Chem, 284, 1863–1872.CrossRefPubMedGoogle Scholar
  33. 33.
    De Vivo, M., Chen, J., Codina, J., & Iyengar, R. (1992) Enhanced phospholipase C stimulation and transformation in NIH-3T3 cells expressing Q209LGq-alpha-subunits. J. Biol. Chem. 267, 18263–18266.PubMedGoogle Scholar
  34. 34.
    Otto, J. C., Kelly, P., Chiou, S. T., & York, J. D. (2007) Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases. Proc. Natl. Acad. Sci. U S A. 104, 15653–15658.CrossRefPubMedGoogle Scholar
  35. 35.
    Otto, J. C., Mulugu, S., Fridy, P. C., Chiou, S. T., Armbruster, B. N., Ribeiro, A. A., & York, J. D. (2007) Biochemical analysis of inositol phosphate kinases. Meth. Enzymol. 434, 171–185.CrossRefPubMedGoogle Scholar
  36. 36.
    Stevenson-Paulik, J., Chiou, S.-T., Frederick, J. P., dela Cruz, J., Seeds, A. M., Otto, J. C., & York, J. D. (2006) Inositol phosphate metabolomics: Merging genetic perturbation with modernized radiolabeling methods. Methods. 39, 112–121.Google Scholar
  37. 37.
    Safrany1, S. T., Caffrey, J. J., Yang, X., Bembenek, M. E., Moyer, M. B., Burkhart, W. A., & Shears, S. B. (1998) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 17, 6599–6607.Google Scholar
  38. 38.
    Fujii, M., & York, J. D. (2005) A role for rat inositol polyphosphate kinases rIPK2 and rIPK1 in inositol pentakisphosphate and inositol hexakisphosphate production in Rat-1 Cells. J. Biol. Chem. 280, 1156–1164.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • James C. Otto
    • 1
  • John D. York
    • 1
  1. 1.Department of Pharmacology and Cancer Biology, Howard Hughes Medical InstituteDuke University Medical CenterDurhamUSA

Personalised recommendations