Skip to main content

HPLC Separation of Inositol Polyphosphates

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 645))

Abstract

High performance liquid chromatography (HPLC) is an essential analytical tool in the study of the large number of inositol phosphate isomers. This chapter focuses on the separation of inositol polyphosphates from [3H]myo-inositol labeled tissues and cells. We review the different HPLC columns that have been used to separate inositol phosphates and their advantages and disadvantages. We describe important elements of sample preparation for effective separations and give examples of how changing factors, such as pH, can considerably improve the resolving ability of the HPLC chromatogram.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Irvine, R.F., and Schell, M.J. (2001) Back in the water: the return of the inositol phosphates. Nat. Rev. Mol. Cell. Biol. 2, 327–338.

    Article  CAS  PubMed  Google Scholar 

  2. York, J.D. (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta. 1761, 552–559.

    CAS  PubMed  Google Scholar 

  3. Shears, S.B. (2007) Understanding the biological significance of diphosphoinositol polyphosphates (‘inositol pyrophosphates’). Biochem. Soc. Symp. 74, 211–221.

    Article  CAS  PubMed  Google Scholar 

  4. Berggren, P.O., and Barker C.J. (2008) A key role for phosphorylated inositol compounds in pancreatic beta-cell stimulus-secretion coupling. Adv. Enzyme Regul. 48, 276–294.

    Article  CAS  PubMed  Google Scholar 

  5. Wong, N.S., Barker, C.J., Morris, A.J, Craxton, A., Kirk, C.J., and Michell R.H. (1992) The inositol phosphates in WRK1 rat mammary tumour cells. Biochem. J. 286, 459–468.

    CAS  PubMed  Google Scholar 

  6. Palmer S., Hughes, K.T., Lee, D.Y, and Wakelam, M.J. (1989) Development of a novel, Ins(1,4,5)P3-specific binding assay. Its use to determine the intracellular concentration of Ins(1,4,5)P3 in unstimulated and vasopressin-stimulated rat hepatocytes. Cell. Signal. 1, 147–156.

    Article  CAS  PubMed  Google Scholar 

  7. Mayr, G.W. (1988) A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem. J. 254, 585–591.

    CAS  PubMed  Google Scholar 

  8. Maccallum, S.H., Barker, C.J., Hunt, P.A., Wong, N.S., Kirk, C.J., and Michell, R.H. (1989) The use of cells doubly labelled with [14C]inositol and [3H]inositol to search for a hormone-sensitive inositol lipid pool with atypically rapid metabolic turnover. J. Endocrinol. 122, 379–389.

    Article  CAS  PubMed  Google Scholar 

  9. Menniti, F.S., Oliver, K.G., Nogimori, K., Obie, J.F., Shears, S.B., and Putney, J.W. Jr. (1990) Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate. J. Biol. Chem. 265, 11167–11176.

    CAS  PubMed  Google Scholar 

  10. Barker, C.J., Wright, J., Hughes, P.J., Kirk, C.J., and Michell, R.H. (2004) Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. Biochem. J. 380, 465–473.

    Article  CAS  PubMed  Google Scholar 

  11. Barker, C.J., French, P.J., Moore, A.J., Nilsson, T., Berggren, P. O., Bunce, C.M., et al. (1995) Inositol 1,2,3-trisphosphate and inositol 1,2- and/or 2,3-bisphosphate are normal constituents of mammalian cells. Biochem. J. 306, 557–564.

    CAS  PubMed  Google Scholar 

  12. Wong, N.S., Barker, C.J., Shears, S.B., Kirk, C.J., and Michell, R.H. (1988) Inositol 1:2(cyclic),4,5-trisphosphate is not a major product of inositol phospholipid metabolism in vasopressin-stimulated WRK1 cells. Biochem. J. 252, 1–5.

    CAS  PubMed  Google Scholar 

  13. Sekar, M.C., Dixon, J.F., and Hokin, L.E. (1987) The formation of inositol 1,2-cyclic 4,5-trisphosphate and inositol 1,2-cyclic 4-bisphosphate on stimulation of mouse pancreatic minilobules with carbamylcholine. J. Biol. Chem. 262, 340–344.

    CAS  PubMed  Google Scholar 

  14. Stephens, L.R., Hawkins, P.T., Morris, A.J., and Downes, P.C. (1988) L-myo-inositol 1,4,5,6-tetrakisphosphate (3-hydroxy)kinase. Biochem. J. 249, 283–292.

    CAS  PubMed  Google Scholar 

  15. Shears S.B. (1998) The versatility of inositol phosphates as cellular signals. Biochim. Biophys. Acta. 1436, 49–67.

    CAS  PubMed  Google Scholar 

  16. Irvine, R.F., Anggård, E.E., Letcher, A.J., and Downes, C.P. (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem. J. 229, 505–511.

    CAS  PubMed  Google Scholar 

  17. Stephens, L.R., Hawkins, P.T., Barker, C.J., and Downes, C.P. (1988) Synthesis of myo-inositol 1,3,4,5,6-pentakisphosphate from inositol phosphates generated by receptor activation. Biochem. J. 253, 721–733.

    CAS  PubMed  Google Scholar 

  18. Balla, T., Guillemette, G., Baukal, A.J., and Catt, K.J. (1987) Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells. J. Biol. Chem. 262, 9952–9955.

    CAS  PubMed  Google Scholar 

  19. Hughes, P.J., Hughes, A.R., Putney, J.W. Jr., and Shears, S.B. (1989) The regulation of the phosphorylation of inositol 1,3,4-trisphosphate in cell-free preparations and its relevance to the formation of inositol 1,3,4,6-tetrakisphosphate in agonist-stimulated rat parotid acinar cells. J. Biol. Chem. 264, 19871–19878.

    CAS  PubMed  Google Scholar 

  20. Stephens, L.R., Hughes, K.T., and Irvine, R.F. (1991) Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351, 33–39.

    Article  CAS  PubMed  Google Scholar 

  21. Heslop, J.P., Irvine, R.F., Tashjian, A.H. Jr., and Berridge, M.J. (1985) Inositol tetrakis- and pentakisphosphates in GH4 cells. J. Exp. Biol. 119, 395–401.

    CAS  PubMed  Google Scholar 

  22. Yu, J., Leibiger, B., Yang, S.N., Caffery, J.J., Shears, S.B., Leibiger, I.B., Barker, C.J., and Berggren, P.O. (2003) Cytosolic multiple inositol polyphosphate phosphatase in the regulation of cytoplasmic free Ca2+ concentration. J. Biol. Chem. 278, 46210–46218.

    Article  CAS  PubMed  Google Scholar 

  23. Illies, C., Gromada, J., Fiume, R., Leibiger, B., Yu, J., Juhl, K., et al. (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 318, 1299–1302.

    Article  CAS  PubMed  Google Scholar 

  24. Naccarato WF, Ray RE, Wells WW. (1974) Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch. Biochem. Biophys. 164, 194–201.

    CAS  Google Scholar 

  25. Allison, J.H., Blisner, M.E., Holland, W.H., Hipps, P.P., and Sherman, W.R. (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664–670.

    Article  CAS  PubMed  Google Scholar 

  26. Berridge, M.J., Downes, C.P., and Hanley, M.R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.

    CAS  PubMed  Google Scholar 

  27. Singh, J., Hunt, P., Eggo, M.C., Sheppard, M.C., Kirk, C.J., and Michell, R.H. (1996) Thyroid-stimulating hormone rapidly stimulates inositol polyphosphate formation in FRTL-5 thyrocytes without activating phosphoinositidase C. Biochem. J. 316, 175–182.

    CAS  PubMed  Google Scholar 

  28. Van Sande, J., Dequanter, D., Lothaire, P., Massart, C., Dumont, J.E., and Erneux, C. (2006) Thyrotropin stimulates the generation of inositol 1,4,5-trisphosphate in human thyroid cells. J. Clin. Endocrinol. Metab. 91, 1099–1107.

    Article  PubMed  Google Scholar 

  29. Larsson, O., Barker, C.J., Sjöholm, A., Carlqvist, H., Michell, R.H., Bertorello, A., et al. (1997) Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate Science 278, 471–474.

    Google Scholar 

  30. Stephens, L.R., Hawkins, P.T., Stanley, A.F., Moore, T., Poyner, D.R., Morris, P.J, et al. (1991) myo-inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate. Biochem. J. 275, 485–499.

    CAS  PubMed  Google Scholar 

  31. Menniti, F.S., Miller, R.N., Putney, J.W. Jr., and Shears, S.B. (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268, 3850–3856.

    CAS  PubMed  Google Scholar 

  32. Stephens, L.R., Berrie, C.P., Irvine, R.F. (1990) Agonist-stimulated inositol phosphate metabolism in avian erythrocytes. Biochem. J. 269, 65–72.

    CAS  PubMed  Google Scholar 

  33. Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.H., Dell, A. et al. (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268, 4009–4015.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. R.H. Michell and Dr. C.J. Kirk for permission to use data obtained while C.J.B was a research fellow in their laboratory. The authors own work was supported by grants from Karolinska Institutet, Novo Nordisk Foundation, the Swedish Research Council, the Swedish Diabetes Association, EFSD, The Family Erling-Persson Foundation, Berth von Kantzow’s Foundation, and EuroDia (LSHM-CT-2006-518153).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barker, C.J., Illies, C., Berggren, PO. (2010). HPLC Separation of Inositol Polyphosphates. In: Barker, C. (eds) Inositol Phosphates and Lipids. Methods in Molecular Biology, vol 645. Humana Press. https://doi.org/10.1007/978-1-60327-175-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-175-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-174-5

  • Online ISBN: 978-1-60327-175-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics