Imaging Phosphoinositide Dynamics in Living Cells

  • Anne Wuttke
  • Olof Idevall-Hagren
  • Anders TengholmEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 645)


To improve our understanding of the important roles played by inositol lipid derivatives in signalling and other cellular processes, it is crucial to measure phosphoinositide concentration changes in individual cells with high spatial and temporal resolution. A number of protein domains that interact with inositol lipids in a specific manner have been identified. Tagged with the green fluorescent protein or its colour variants, these protein modules can be used as probes to visualize various phosphoinositide species in different sub-cellular compartments. Here, we present protocols for fluorescence imaging of phosphoinositide dynamics in single living cells. Total internal reflection fluorescence microscopy is particularly powerful for time-lapse recordings of phosphoinositides in the plasma membrane. We demonstrate how this technique can be used to record phospholipase C- and PI3-kinase-induced changes in inositol lipids in insulin-secreting cells. These procedures should be applicable to studies of the spatio-temporal regulation of phosphoinositide metabolism in many types of cells.

Key words:

Phosphatidylinositol 4,5-bisphosphate Phosphatidylinositol 3,4,5-trisphosphate Phospholipase C PI3-kinase Pleckstrin homology domain Ca2+ Green fluorescent protein Total internal reflection fluorescence microscopy Insulin-secreting cell 



We thank Professors Tobias Meyer, Stanford University, for the GFP-PHAkt and PLCδ1PH-GFP plasmids and Roger Tsien, University of California in San Diego, for tdimer2. The authors’ work is supported by grants from Åke Wiberg’s Foundation, the European Foundation for the Study of Diabetes/MSD, the family Ernfors Foundation, Harald and Greta Jeanssons Foundations, Novo Nordisk Foundation, the Swedish Diabetes Association and the Swedish Research Council.


  1. 1.
    Rusten, T. E., and Stenmark, H. (2006) Analyzing phosphoinositides and their interacting proteins. Nat Methods 3, 251–258.CrossRefPubMedGoogle Scholar
  2. 2.
    Stauffer, T. P., Ahn, S., and Meyer, T. (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P 2 concentration monitored in living cells. Curr Biol 8, 343–346.CrossRefPubMedGoogle Scholar
  3. 3.
    Varnai, P., and Balla, T. (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143, 501–510.CrossRefPubMedGoogle Scholar
  4. 4.
    Halet, G. (2005) Imaging phosphoinositide dynamics using GFP-tagged protein domains. Biol Cell 97, 501–518.CrossRefPubMedGoogle Scholar
  5. 5.
    Lemmon, M. A. (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99–111.CrossRefPubMedGoogle Scholar
  6. 6.
    Balla, T., and Varnai, P. (2002) Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci STKE 2002, PL3.Google Scholar
  7. 7.
    Lemmon, M. A. (2003) Phosphoinositide recognition domains. Traffic 4, 201–213.CrossRefPubMedGoogle Scholar
  8. 8.
    Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B., and Schlessinger, J. (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92, 10472–10476.CrossRefPubMedGoogle Scholar
  9. 9.
    Haugh, J. M., Codazzi, F., Teruel, M., and Meyer, T. (2000) Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J Cell Biol 151, 1269–1280.CrossRefPubMedGoogle Scholar
  10. 10.
    Gray, A., Van Der Kaay, J., and Downes, C. P. (1999) The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 344 Pt 3, 929–936.CrossRefPubMedGoogle Scholar
  11. 11.
    Tengholm, A., and Meyer, T. (2002) A PI3-kinase signaling code for insulin-triggered insertion of glucose transporters into the plasma membrane. Curr Biol 12, 1871–1876.CrossRefPubMedGoogle Scholar
  12. 12.
    Downes, C. P., Gray, A., and Lucocq, J. M. (2005) Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol 15, 259–268.CrossRefPubMedGoogle Scholar
  13. 13.
    Varnai, P., and Balla, T. (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim Biophys Acta 1761, 957–967.PubMedGoogle Scholar
  14. 14.
    Axelrod, D. (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774.CrossRefPubMedGoogle Scholar
  15. 15.
    Steyer, J. A., and Almers, W. (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2, 268–275.CrossRefPubMedGoogle Scholar
  16. 16.
    Thore, S., Dyachok, O., and Tengholm, A. (2004) Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells. J Biol Chem 279, 19396–19400.CrossRefPubMedGoogle Scholar
  17. 17.
    Thore, S., Dyachok, O., Gylfe, E., and Tengholm, A. (2005) Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting β-cells. J Cell Sci 118, 4463–4471.CrossRefPubMedGoogle Scholar
  18. 18.
    Thore, S., Wuttke, A., and Tengholm, A. (2007) Rapid turnover of phosphatidylinositol-4,5-bisphosphate in insulin-secreting cells mediated by Ca2+ and the ATP-to-ADP ratio. Diabetes 56, 818–826.CrossRefPubMedGoogle Scholar
  19. 19.
    Idevall-Hagren, O., and Tengholm, A. (2006) Glucose and insulin synergistically activate PI3-kinase to trigger oscillations of phosphatidylinositol-3,4,5-trisphosphate in beta-cells. J Biol Chem 281, 39121–39127.CrossRefGoogle Scholar
  20. 20.
    Sato, M., Ueda, Y., Takagi, T., and Umezawa, Y. (2003) Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 5, 1016–1022.CrossRefPubMedGoogle Scholar
  21. 21.
    Ananthanarayanan, B., Ni, Q., and Zhang, J. (2005) Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity. Proc Natl Acad Sci USA 102, 15081–15086.CrossRefPubMedGoogle Scholar
  22. 22.
    Gillooly, D. J., Morrow, I. C., Lindsay, M., Gould, R., Bryant, N. J., Gaullier, J. M., Parton, R. G., and Stenmark, H. (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19, 4577–4588.CrossRefPubMedGoogle Scholar
  23. 23.
    Burd, C. G., and Emr, S. D. (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2, 157–162.CrossRefPubMedGoogle Scholar
  24. 24.
    Gaullier, J. M., Simonsen, A., D’Arrigo, A., Bremnes, B., Stenmark, H., and Aasland, R. (1998) FYVE fingers bind PtdIns(3)P. Nature 394, 432–433.CrossRefPubMedGoogle Scholar
  25. 25.
    Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V., and Chawla, A. (1998) A functional PtdIns(3)P- binding motif. Nature 394, 433–434.CrossRefPubMedGoogle Scholar
  26. 26.
    Vermeer, J. E., van Leeuwen, W., Tobena-Santamaria, R., Laxalt, A. M., Jones, D. R., Divecha, N., Gadella, T. W., Jr., and Munnik, T. (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J 47, 687–700.CrossRefPubMedGoogle Scholar
  27. 27.
    Stahelin, R. V., Burian, A., Bruzik, K. S., Murray, D., and Cho, W. (2003) Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox. J Biol Chem 278, 14469–14479.CrossRefPubMedGoogle Scholar
  28. 28.
    Ellson, C. D., Gobert-Gosse, S., Anderson, K. E., Davidson, K., Erdjument-Bromage, H., Tempst, P., Thuring, J. W., Cooper, M. A., Lim, Z. Y., Holmes, A. B., Gaffney, P. R., Coadwell, J., Chilvers, E. R., Hawkins, P. T., and Stephens, L. R. (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat Cell Biol 3, 679–682.CrossRefPubMedGoogle Scholar
  29. 29.
    Ellson, C. D., Anderson, K. E., Morgan, G., Chilvers, E. R., Lipp, P., Stephens, L. R., and Hawkins, P. T. (2001) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 11, 1631–1635.CrossRefPubMedGoogle Scholar
  30. 30.
    Kanai, F., Liu, H., Field, S. J., Akbary, H., Matsuo, T., Brown, G. E., Cantley, L. C., and Yaffe, M. B. (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3, 675–678.CrossRefPubMedGoogle Scholar
  31. 31.
    Levine, T. P., and Munro, S. (1998) The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr Biol 8, 729–739.CrossRefPubMedGoogle Scholar
  32. 32.
    Levine, T. P., and Munro, S. (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12, 695–704.CrossRefPubMedGoogle Scholar
  33. 33.
    Balla, A., Tuymetova, G., Tsiomenko, A., Varnai, P., and Balla, T. (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 16, 1282–1295.CrossRefPubMedGoogle Scholar
  34. 34.
    Godi, A., Di Campli, A., Konstantakopoulos, A., Di Tullio, G., Alessi, D. R., Kular, G. S., Daniele, T., Marra, P., Lucocq, J. M., and De Matteis, M. A. (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6, 393–404.CrossRefPubMedGoogle Scholar
  35. 35.
    Balla, A., Kim, Y. J., Varnai, P., Szentpetery, Z., Knight, Z., Shokat, K. M., and Balla, T. (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIa. Mol Biol Cell 19, 711–721.CrossRefPubMedGoogle Scholar
  36. 36.
    Roy, A., and Levine, T. P. (2004) Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J Biol Chem 279, 44683–44689.CrossRefPubMedGoogle Scholar
  37. 37.
    Gozani, O., Karuman, P., Jones, D. R., Ivanov, D., Cha, J., Lugovskoy, A. A., Baird, C. L., Zhu, H., Field, S. J., Lessnick, S. L., Villasenor, J., Mehrotra, B., Chen, J., Rao, V. R., Brugge, J. S., Ferguson, C. G., Payrastre, B., Myszka, D. G., Cantley, L. C., Wagner, G., Divecha, N., Prestwich, G. D., and Yuan, J. (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111.CrossRefPubMedGoogle Scholar
  38. 38.
    Karathanassis, D., Stahelin, R. V., Bravo, J., Perisic, O., Pacold, C. M., Cho, W., and Williams, R. L. (2002) Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21, 5057–5068.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhan, Y., Virbasius, J. V., Song, X., Pomerleau, D. P., and Zhou, G. W. (2002) The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J Biol Chem 277, 4512–4518.CrossRefPubMedGoogle Scholar
  40. 40.
    Dowler, S., Currie, R. A., Campbell, D. G., Deak, M., Kular, G., Downes, C. P., and Alessi, D. R. (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351, 19–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Manna, D., Albanese, A., Park, W. S., and Cho, W. (2007) Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J Biol Chem 282, 32093–32105.CrossRefPubMedGoogle Scholar
  42. 42.
    Kimber, W. A., Trinkle-Mulcahy, L., Cheung, P. C., Deak, M., Marsden, L. J., Kieloch, A., Watt, S., Javier, R. T., Gray, A., Downes, C. P., Lucocq, J. M., and Alessi, D. R. (2002) Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 361, 525–536.CrossRefPubMedGoogle Scholar
  43. 43.
    Xu, C., Watras, J., and Loew, L. M. (2003) Kinetic analysis of receptor-activated phosphoinositide turnover. J Cell Biol 161, 779–791.CrossRefPubMedGoogle Scholar
  44. 44.
    Sun, Y., Carroll, S., Kaksonen, M., Toshima, J. Y., and Drubin, D. G. (2007) PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J Cell Biol 177, 355–367.CrossRefPubMedGoogle Scholar
  45. 45.
    Dove, S. K., Piper, R. C., McEwen, R. K., Yu, J. W., King, M. C., Hughes, D. C., Thuring, J., Holmes, A. B., Cooke, F. T., Michell, R. H., Parker, P. J., and Lemmon, M. A. (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23, 1922–1933.CrossRefPubMedGoogle Scholar
  46. 46.
    Krick, R., Tolstrup, J., Appelles, A., Henke, S., and Thumm, M. (2006) The relevance of the phosphatidylinositolphosphate-binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy. FEBS Lett 580, 4632–4638.CrossRefPubMedGoogle Scholar
  47. 47.
    Yan, J., Wen, W., Xu, W., Long, J. F., Adams, M. E., Froehner, S. C., and Zhang, M. (2005) Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alpha-syntrophin. EMBO J 24, 3985–3995.CrossRefPubMedGoogle Scholar
  48. 48.
    Venkateswarlu, K., Oatey, P. B., Tavare, J. M., and Cullen, P. J. (1998) Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol 8, 463–466.CrossRefPubMedGoogle Scholar
  49. 49.
    Varnai, P., Rother, K. I., and Balla, T. (1999) Phosphatidylinositol 3-kinase-dependent mem-brane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274, 10983–10989.CrossRefPubMedGoogle Scholar
  50. 50.
    Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99, 7877–7882.CrossRefPubMedGoogle Scholar
  51. 51.
    Fivaz, M., and Meyer, T. (2003) Specific localization and timing in neuronal signal transduction mediated by protein-lipid interactions. Neuron 40, 319–330.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anne Wuttke
    • 1
  • Olof Idevall-Hagren
    • 1
  • Anders Tengholm
    • 1
    Email author
  1. 1.Department of Medical Cell BiologyUppsala UniversityUppsalaSweden

Personalised recommendations