Skip to main content

Mesenchymal Stem Cells from Adult Bone Marrow

  • Protocol
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 449))

Abstract

Mesenchymal stem cells (MSCs), sometimes referred to as marrow stromal cells or multipotential stromal cells, represent a class of adult progenitor cells capable of differentiation to several mesenchymal lineages. They can be isolated from many tissues although bone marrow has been used most often. The MSCs may prove useful for repair and regeneration of a variety of mesenchymal tissues such as bone, cartilage, muscle, marrow stroma, and the cells produce useful growth factors and cytokines that may help repair additional tissues. There is also evidence for their differentiation to nonmesenchymal lineages, but that work will not be considered here. This chapter will provide the researcher with some background, and then provide details on MSC isolation, expansion and multilineage differentiation. These are the beginning steps toward formulating tissue repair strategies. The methods provided here have been used in many laboratories around the world and the reader can begin by following the methods presented here, and then test other methods if these prove unsatisfactory for your intended purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Caplan, A. I (1991) Mesenchymal stem cells. J. Orthop. Res. 9:641–650.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Haynesworth, S. E., Baber M. A., and Caplan, A. 1. (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., and Caplan, A. 1. 1995. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4).557–564.

    CAS  PubMed  Google Scholar 

  4. 4. Pittenger, M. F., Mackay, A. M., Beck, S. C, Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. l., and Frolova, G. P. (1968) Heterotopic transplants of bone marrow: Analysis of precursor cells for osteogenic and haematopoietic tissues. Transplantation 6:230–247.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Friedenstein, A. J. (1976) Precursor cells of mechanocytes. Int. Rev. Cytol. 47:327–355.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Owen, M. E. and Friedenstein, A. J. (1988) Stromal stem cells: marrow derived osteogenic precursors. Ciba Found. Symp. 136:42–60.

    CAS  PubMed  Google Scholar 

  8. 8. Halvorsen, Y. C, Wilkison, W. O., and Gimble, J. M. (2000) Adipose-derived stromal cells their utility and potential in bone formation. Int J Obes Relat Metab Disord. 24:S41–44.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., and Gimble, J. M. (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 189:54–63.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C, Eraser, J. K., Benhaim, P., and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell.13:4279–295.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Lodie, T. A., Blickarz, C. E., Devarakonda, T. J., He, C, Dash, A. B., Clarke, J., Gleneck, K., Shihabuddin, L., and Tubo, R. (2002) Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng. 8:739–751.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Phinney, D. G., Kopen, G., Isaacson, R. L., and Prockop, D. (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and differentiation. J. Cell. Biochem. 72:570–585.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Saito, T., Dennis, J. E., Lennon, D. P., Young, R. G., and Caplan, A. I. (1995) Myogenic expresssion of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Engin. 1(4): 327–343.

    Article  CAS  Google Scholar 

  14. 14. Pereira, R. F., Halford, K. W., O'Hara, M. D., Leeper, D. B., Sokolov, B. P., Pollard, M. D., Bagasra, O., and Prockop, D. J. (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irradiated mice. Proc. Natl. Acad. Sci. USA. 92:4857–4861.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Dennis, J. E., Merriam, A., Awadalla, A., Yoo, J. U., Johnstone, B., and Caplan, A. 1. (1999) A quadripotent mesenchymal progenitor cell isolated from the marrow of an adult mouse. J. Bone Miner Res. 14:700–709.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Short, B., Brouard, N., Driessen, R., and Simmons, P. J. (2001). Prospective isolation of stromal progenitor cells from mouse BM. Cytotherapy. 3:407, 408.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Grigoriadis, A. E., Heersche, J., and Aubin, J. E. (1990) Continuously growing bipotential and monopotential myogenic, adipogenic and chondrogenic subclones isolated from the multipotential RCJ3.1 clonal cell line. Developmental Biology 142:313–318.

    Article  CAS  PubMed  Google Scholar 

  18. 18. LeBoy, P. S., Beresford, J., Devlin, C, and Owen, M. (1991) Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J. Cell Physiol. 146:370–378.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Beresford, J. N., Bennett, J. H., Devlin, C, LeBoy, P. S., and Owen, M. (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102:341–351.

    CAS  PubMed  Google Scholar 

  20. 20. Kadiyala, S., Jaiswal, N., and Bruder, S. P. (1997) Culture-expanded bone marrow-derived mesenchynal stem cells can regenerate a critical-sized segmental bone defect. Tissue Engirt. 3:173–185.

    Article  Google Scholar 

  21. 21. Neuhuber, B., Gallo, G., Howard, L., Kostura, L., Mackay, A., and Fischer, 1. (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 77(2): 192–204.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Goldberg, V. M., and Caplan, A. I. (1994) Mesenchymal cell based repair of large, full thickness defects of articular cartilage. J. Bone Joint Surg. 76:579–592.

    CAS  PubMed  Google Scholar 

  23. 23. Grande, D. A., Southerland, S. S., Ryhanna, Manji, B. S., Pate, D. W., Schwartz, R. E., and Lucas, P. A. (1995) Repair of articular defects using mesenchymal stem cells. Tissue Engin.1:345–353.

    Article  CAS  Google Scholar 

  24. 24. Young, R. G., Butler, D. L., Weber, W., Caplan, A. 1., Gordon, S. L., and Fink, D. J. (1998) Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. J. Orthop. Res. 16:406–413.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Kadiyala, S., Young, R. G., Thiede, M. A., and Bruder, S. P. (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6(2): 125–134.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W. P., Chen, H. H., Fritzges, D., Izbudak, I., Young, R. G., Marcelino, M., Pittenger, M. F., Solaiyappan, M., Boston, R. C, Tsui, B. M., Wahl, R. L., and Bulte, J. W. (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 112(10):1451–1461.

    Article  PubMed  Google Scholar 

  27. 27. Murphy, J. M., Fink, D. J., Hunziker, E. B., and Barry, F. P. (2003). Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48:3464–3474.

    Article  PubMed  Google Scholar 

  28. 28. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., Pittenger, M. F., and Martin, B. J. (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1925.

    Article  PubMed  Google Scholar 

  29. 29. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C, Martin, B. J., Pittenger, M. F., Hare, J. M., and Bulte, J. W. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation. 107(18):2290–2293.

    Article  PubMed  Google Scholar 

  30. 30. Amado, L. C, Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G., Lehrke, S., Baumgartner, W. W., Martin, B. J., Heldman, A. W., and Hare, J. M. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. USA. 102(32):11,474–11,479.

    Article  CAS  Google Scholar 

  31. 31. Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., Palasis, M., and Wilensky, R. L. (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27(9): 1114–1122.

    Article  PubMed  Google Scholar 

  32. 32. Mahmud, N., Pang, W., Cobbs, C, Alur, P., Borneman, J., Dodds, R., Archambault, M., Devine, S., Turian, J., Bartholomew, A., Vanguri, P., Mackay, A., Young, R., and Hoffman, R. (2004) Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Exp. Hematol. 32(5):494–501.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Chapel, A., Bertho, J. M., Bensidhoum, M., Fouillard, L., Young, R. G., Frick, J., Demarquay, C, Cuvelier, P., Mathieu, E., Trompier, F., Dudoignon, N., Germain, C., Mazurier, C., Aigueperse, J.. Borneman, J., Gorin, N. C., Gourmelon, P., and Thierry, D. (2003). Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation- induced multiorgan failure syndrome. J. Gene Med. 5(12): 1028–1038.

    Article  PubMed  Google Scholar 

  34. 34. Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A., and Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 101(8):2999–3001.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Bartholomew, A., Patil, S., Mackay, A., Nelson, M., Buyaner, D., Hardy, W., Mosca, J., Sturgeon, C., Siatskas, M., Mahmud, N., Ferrer, K., Deans, R., Moseley, A., Hoffman, R., and Devine, S. M. (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum. Gene Ther. 12(12):1527–1541.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Haynesworth SE, Baber MA, and Caplan AI (1996) Cytokine expression by human marrow- derived mesenchymal progenitor cells in vitro: effects of dex and IL-1α. J. Cell. Physiol. 166: 585–592.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., and Gerson, S. L. (1998). Phenotypic and functional comparison of marrow-derived mesenchymal stem cells and stromal cells. J. Cell Phys. 176:57–66.

    Article  CAS  Google Scholar 

  38. 38. Reese, J. S., Koc, O. N., and Gerson, S. L. (1999) Human mesenchymal stem cells provide stromal support for efficient CD344+ transduction. J. Hematother. Stem Cell Res. 8:515–523.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Cheng, L., Hammond, H., Ye, Z., Zhan, X., and Dravid, G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells. 21(2):131–142.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Mackay, A. M., Beck, S. C, Murphy, J. M., Barry, F. P., Chichester, C. O., and Pittenger, M. F. (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4(4): 415–428.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Johnstone, B., Hering, T. M., Caplan, A. 1., Goldberg, V. M., and Yoo, J. U. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 10;238(l):265–272.

    Article  Google Scholar 

  42. 42. Jaiswal, R. K., Jaiswal, N., Bruder, S. P., Mbalaviele, G., Marshak, D. R., and Pittenger, M. F. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275(13):9645–9652.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Bittira, B., Shum-Tim, D., Al-Khaldi, A., and Chiu, R. C. 2003. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg. 24(3):393–398.

    Article  PubMed  Google Scholar 

  44. 44. Pittenger, M. F., and Martin, B. J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95(l):9–20.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Francois, S., Bensidhoum, M., Mouiseddine, M., Mazurier, C, Allenet, B., Semont, A., Frick, J., Sache, A., Bouchet, S., Thierry, D., Gourmelon, P., Gorin, N. C,, and Chapel, A. (2006). Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. .Stem Cells. 24:1020–1029.

    Article  PubMed  Google Scholar 

  46. 46. Klyushnenkova, E., Mosca, J. D., Zernetkina, V., Majumdar, M. K., Beggs, K. J., Simonetti, D. W., Deans, R. J., and Mcintosh, K. R. (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci.12(l):47–57.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Di Nicola, M., Carlo-Stella, C, Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., and Gianni, A.M. (2002) Human bone marrow stromal cells suppress T-lym-phocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 99 (2002), 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Aggarwal, S., and Pittenger, M. F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 105(4):1815–1822.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Le Blanc, K., and Pittenger, M. F. (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy. 7(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Groh, M. E., Maitra, B., Szekely, E., and Koc, O.N. (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hemat. 33(8):928–934.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Le Blanc, K., Rasmusson, 1., Sundberg, B., Gotherstrom, C, Hassan, M., Uzunel, M., and Ringden, O. (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 363(9419):1439–1441.

    Article  PubMed  Google Scholar 

  52. 52. Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L., and Hofmann, T. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl Acad. Sci. USA.99 (13).8932–8937.

    Article  CAS  PubMed  Google Scholar 

  53. 53. Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., Anneren, G., Axelsson, O., Nunn, J., Ewald, U., Norden-Lindeberg, S., Jansson, M., Dalton, A., Astrom, E., and Westgren, M. (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 79(11):1607–1614.

    Article  PubMed  Google Scholar 

  54. 54. Koc, O. N., Day, J., Nieder, M., Gerson, S. L., Lazarus, H. M., and Krivit, W. (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 30(4):215–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pittenger, M.F. (2008). Mesenchymal Stem Cells from Adult Bone Marrow. In: Prockop, D.J., Bunnell, B.A., Phinney, D.G. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology™, vol 449. Humana Press. https://doi.org/10.1007/978-1-60327-169-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-169-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-771-6

  • Online ISBN: 978-1-60327-169-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics