Skip to main content

Reconstruction of Full-Length Isoforms from Splice Graphs

  • Protocol
Book cover Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 452))

Abstract

Most alternative splicing events in human and other eukaryotic genomes are detected using sequence fragments produced by high throughput genomic technologies, such as EST sequencing and oligonu-cleotide microarrays. Reconstructing full-length transcript isoforms from such sequence fragments is a major interest and challenge for computational analyses of pre-mRNA alternative splicing. This chapter describes a general graph-based approach for computational inference of full-length isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boue, S., Vingron, M., Kriventseva, E., et al. (2002) Theoretical analysis of alternative splice forms using computational methods. Bioinformatics 18 Suppl 2, S65–S73.

    PubMed  Google Scholar 

  2. Lee, C., Wang, Q. (2005) Bioinformatics analysis of alternative splicing. Brief Bioin-form 6, 23–33.

    Article  CAS  Google Scholar 

  3. Heber, S., Alekseyev, M., Sze, S. H., et al. (2002) Splicing graphs and EST assembly problem. Bioinformatics 18 Suppl. 1, S181–188.

    PubMed  Google Scholar 

  4. Blencowe, B. J. (2006) Alternative splicing: new insights from global analyses. Cell 126, 37–47.

    Article  PubMed  CAS  Google Scholar 

  5. Xing, Y., Resch, A., Lee, C. (2004) The Multiassembly Problem: reconstructing multiple transcript isoforms from EST fragment mixtures. Genome Res 14, 426–441.

    Article  PubMed  CAS  Google Scholar 

  6. Leipzig, J., Pevzner, P., Heber, S. (2004) The Alternative Splicing Gallery (ASG): bridging the gap between genome and transcriptome. Nucleic Acids Res 32, 3977–3983.

    Article  PubMed  CAS  Google Scholar 

  7. Eyras, E., Caccamo, M., Curwen, V., et al. (2004) ESTGenes: alternative splicing from ESTs in Ensembl. Genome Res 14, 976–987.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, P., Kim, N., Lee, Y., et al. (2005) ECgene: genome annotation for alternative splicing. Nucleic Acids Res 33, D75–79.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, B. T., Tan, T. W., and Ranganathan, S. (2004) DEDB: a database of Drosophila melanogaster exons in splicing graph form. BMC Bioinformatics 5, 189.

    Article  PubMed  Google Scholar 

  10. Florea, L., Di Francesco, V., Miller, J., et al. (2005) Gene and alternative splicing annotation with AIR. Genome Res 15, 54–66.

    Article  PubMed  CAS  Google Scholar 

  11. Xing, Y., Yu, T., Wu, Y. N., et al. (2006) An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res 34, 3150–3160.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, C. (2003) Generating consensus sequences from partial order multiple sequence alignment graphs. Bioinformatics 19, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  13. Maquat, L. E. (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5, 89–99.

    Article  PubMed  CAS  Google Scholar 

  14. Resch, A., Xing, Y., Modrek, B., et al. (2004) Assessing the impact of alternative splicing on domain interactions in the human pro-teome. J Proteome Res 3, 76–83.

    Article  PubMed  CAS  Google Scholar 

  15. Xing, Y., Xu, Q., Lee, C. (2003) Widespread production of novel soluble protein isoforms by alternative splicing removal of transmembrane anchoring domains. FEBS Lett 555, 572–578.

    Article  PubMed  CAS  Google Scholar 

  16. Malde, K., Coward, E., Jonassen, I. (2005) A graph based algorithm for generating EST consensus sequences. Bioinformatics 21, 1371–1375.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, C., Atanelov, L., Modrek, B., et al. (2003) ASAP: The Alternative Splicing Annotation Project. Nucleic Acids Res 31, 101–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Dreyfus Foundation Teacher-Scholar Award to C.J.L., and by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 RR021813 entitled Center for Computational Biology (CCB). Information on the National Centers for Biomedical Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xing, Y., Lee, C. (2008). Reconstruction of Full-Length Isoforms from Splice Graphs. In: Keith, J.M. (eds) Bioinformatics. Methods in Molecular Biology™, vol 452. Humana Press. https://doi.org/10.1007/978-1-60327-159-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-159-2_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-707-5

  • Online ISBN: 978-1-60327-159-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics