Skip to main content

Genetic Transformation of Candida albicans

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 499))

Abstract

Genetic transformation is the primary method of genetic manipulation of Candida albicans. The lack of a complete sexual cycle prevents application of classical genetic analyses. However, transformation permits introduction into the genome of a wide variety of defined mutations including deletions, insertions, and fusions. Although several methods of transformation are available, the lithium-cation-induced transformation method described here is the most commonly used.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kurtz, M. B., Cortelyou, M. W., and Kirsch, D. R. (1986) Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene. Mol. Cell. Biol. 6, 142–149.

    PubMed  CAS  Google Scholar 

  2. Kelly, R., Miller, S. M., and Kurtz, M. B. (1988) One-step gene disruption by cotransformation to isolate double auxotrophs in Candida albicans. Mol. Gen. Genet. 214, 24–31.

    Article  PubMed  CAS  Google Scholar 

  3. Morschhauser, J., Michel, S., and Staib, P. (1999) Sequential gene disruption in Candida albicans by FLP-mediated site- specific recombination. Mol. Microbiol. 32, 547–556.

    Article  PubMed  CAS  Google Scholar 

  4. Reuss, O., Vik, A., Kolter, R., and Morschhauser, J. (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127.

    Article  PubMed  CAS  Google Scholar 

  5. Wirsching, S., Michel, S., and Morschhauser, J. (2000) Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol. Microbiol. 36, 856–865.

    Article  PubMed  CAS  Google Scholar 

  6. Fonzi, W. A., and Irwin, M. Y. (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.

    PubMed  CAS  Google Scholar 

  7. Dennison, P. M., Ramsdale, M., Manson, C. L., and Brown, A. J. (2005) Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet. Biol. 42, 737–748.

    Article  PubMed  CAS  Google Scholar 

  8. Gerami-Nejad, M., Berman, J., and Gale, C. A. (2001) Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18, 859–864.

    Article  PubMed  CAS  Google Scholar 

  9. Gerami-Nejad, M., Hausauer, D., McClellan, M., Berman, J., and Gale, C. (2004) Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans. Yeast 21, 429–436.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson, R. B., Davis, D., and Mitchell, A. P. (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181, 1868–1874.

    PubMed  CAS  Google Scholar 

  11. Schaub, Y., Dunkler, A., Walther, A., and Wendland, J. (2006) New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J. Basic Microbiol. 46, 416–429.

    Article  PubMed  CAS  Google Scholar 

  12. Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1996) Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40, 2300–2305.

    PubMed  CAS  Google Scholar 

  13. De Backer, M. D., Maes, D., Vandoninck, S., Logghe, M., Contreras, R., and Luyten, W. H. (1999) Transformation of Candida albicans by electroporation. Yeast 15, 1609–1618.

    Article  PubMed  Google Scholar 

  14. Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 20, 1425.

    Google Scholar 

  15. Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Methods in Yeast Genetics. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.

    Google Scholar 

  16. Hull, C. M., and Johnson, A. D. (1999) Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285, 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  17. Schiestl, R. H., and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346.

    Article  PubMed  CAS  Google Scholar 

  18. Gietz, R. D., and Woods, R. A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96.

    Article  PubMed  CAS  Google Scholar 

  19. Walther, A., and Wendland, J. (2003) An improved transformation protocol for the human fungal pathogen Candida albicans. Curr. Genet. 42, 339–343.

    Article  PubMed  CAS  Google Scholar 

  20. Braun, B. R., and Johnson, A. D. (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.

    Article  PubMed  CAS  Google Scholar 

  21. Srikantha, T., Morrow, B., Schröppel, K., and Soll, D. R. (1995) The frequency of integrative transformation at phase-specific genes of Candida albicans correlates with their transcriptional state. Mol. Gen. Genet. 246, 342–352.

    Article  PubMed  CAS  Google Scholar 

  22. Yesland, K., and Fonzi, W. A. (2000) Allele-specific gene targeting in Candida albicans results from heterology between alleles. Microbiology 146, 2097–2104.

    PubMed  CAS  Google Scholar 

  23. Gola, S., Martin, R., Walther, A., Dunkler, A., and Wendland, J. (2003) New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramon, A.M., Fonzi, W.A. (2009). Genetic Transformation of Candida albicans . In: Cihlar, R.L., Calderone, R.A. (eds) Candida albicans. Methods in Molecular Biology, vol 499. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-151-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-151-6_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-760-0

  • Online ISBN: 978-1-60327-151-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics